论文标题
用几何阶段确定QMC的模拟性
Determining QMC simulability with geometric phases
论文作者
论文摘要
尽管已知可以通过无标志性量子蒙特卡洛(QMC)技术来模拟杂种汉密尔顿人,但哈密顿量的非拼写性并不一定意味着存在QMC标志问题。我们在与加权矩阵是汉密尔顿人的加权图的无弦循环相关的几何阶段方面,在固定的基础上为哈密顿量的QMC类似性提供了足够和必要的条件。我们使用我们的发现为非拼写的,但无标志的问题以及QMC类似的量子多体型模型提供了结构。我们还证明了为什么使用静态化的哈密顿量的QMC权重对真正的符号模型进行模拟通常是最佳的。我们提供了一种优越的选择。
Although stoquastic Hamiltonians are known to be simulable via sign-problem-free quantum Monte Carlo (QMC) techniques, the non-stoquasticity of a Hamiltonian does not necessarily imply the existence of a QMC sign problem. We give a sufficient and necessary condition for the QMC-simulability of Hamiltonians in a fixed basis in terms of geometric phases associated with the chordless cycles of the weighted graphs whose adjacency matrices are the Hamiltonians. We use our findings to provide a construction for non-stoquastic, yet sign-problem-free and hence QMC-simulable, quantum many-body models. We also demonstrate why the simulation of truly sign-problematic models using the QMC weights of the stoquasticized Hamiltonian is generally sub-optimal. We offer a superior alternative.