论文标题

Wigner型定理的几何方法

A geometric approach to Wigner-type theorems

论文作者

Pankov, Mark, Vetterlein, Thomas

论文摘要

令$ h $为复杂的希尔伯特空间,让$ {\ Mathcal p}(h)$为相关的投影空间(一组排名一的预测)。假设$ \ dim H \ ge 3 $。我们证明了以下Wigner-type定理:如果$ h $是有限的,那么$ {\ Mathcal p}(h)$的每个正交性保留转换都是由单一或反独立的操作员诱导的。该语句将是由于以下结果而获得的:每种正交性保留$ {\ Mathcal p}(h)$本身的lineation均由线性或结合线性等轴测图引起(假定$ h $不假定为有限的二级)。作为一种应用,我们描述了(不一定是抹香间)的拉格曼人的转变,以保留某些类型的主要角度。

Let $H$ be a complex Hilbert space and let ${\mathcal P}(H)$ be the associated projective space (the set of rank-one projections). Suppose that $\dim H\ge 3$. We prove the following Wigner-type theorem: if $H$ is finite-dimensional, then every orthogonality preserving transformation of ${\mathcal P}(H)$ is induced by a unitary or anti-unitary operator. This statement will be obtained as a consequence of the following result: every orthogonality preserving lineation of ${\mathcal P}(H)$ to itself is induced by a linear or conjugate-linear isometry ($H$ is not assumed to be finite-dimensional). As an application, we describe (not necessarily injective) transformations of Grassmannians preserving some types of principal angles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源