论文标题

学到的初始化以优化基于坐标的神经表示

Learned Initializations for Optimizing Coordinate-Based Neural Representations

论文作者

Tancik, Matthew, Mildenhall, Ben, Wang, Terrance, Schmidt, Divi, Srinivasan, Pratul P., Barron, Jonathan T., Ng, Ren

论文摘要

基于坐标的神经表示表现出很大的希望,作为复杂低维信号的离散,基于阵列的表示的替代方案。但是,从每个新信号的随机初始化权重优化基于坐标的网络效率低下。我们建议使用标准的元学习算法根据所表示的基础信号类别(例如,面部或3D椅子的3D模型的图像)学习这些完全连接的网络的初始权重参数。尽管仅需要实施的较小变化,但使用这些学到的初始权重可以在优化过程中更快地收敛,并且可以对被建模的信号类别进行强大的先验,从而在只有部分观察给定信号时会更好地概括。我们在各种任务中探索这些好处,包括表示2D图像,重建CT扫描以及从2D图像观测值中恢复3D形状和场景。

Coordinate-based neural representations have shown significant promise as an alternative to discrete, array-based representations for complex low dimensional signals. However, optimizing a coordinate-based network from randomly initialized weights for each new signal is inefficient. We propose applying standard meta-learning algorithms to learn the initial weight parameters for these fully-connected networks based on the underlying class of signals being represented (e.g., images of faces or 3D models of chairs). Despite requiring only a minor change in implementation, using these learned initial weights enables faster convergence during optimization and can serve as a strong prior over the signal class being modeled, resulting in better generalization when only partial observations of a given signal are available. We explore these benefits across a variety of tasks, including representing 2D images, reconstructing CT scans, and recovering 3D shapes and scenes from 2D image observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源