论文标题

任何偏向转置I:量子信息方面

Anyonic Partial Transpose I: Quantum Information Aspects

论文作者

Shapourian, Hassan, Mong, Roger S. K., Ryu, Shinsei

论文摘要

混合量子状态中纠缠的基本诊断称为部分转置,相应的纠缠措施称为对数负性。尽管对数否定性在表征骨骼多体系统方面取得了巨大的成功,但将部分转介概括为费米金系统,直到最近,当提出了Fermi统计数据的新定义时,才是技术挑战。在本文中,我们提出了一种基于部分转置和编织操作之间明显相似性的(非亚伯)分数统计的人将部分转置推广到具有(非亚伯利亚)分数统计的方法。然后,我们定义了对数负效率的任何版本,并表明它满足了标准要求,例如单调性是纠缠措施。特别是,我们通过计算出各种类别中一对任何人的玩具密度矩阵来计算任何人对数负性的属性。我们猜想,与普通量子空间占据有限体积的普通Qubit Systems相反,在任何型状态的整个空间中,具有消失的对数负面状态的状态子空间是一组量度零。我们证明了无多重类别的猜想。

A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose and the corresponding entanglement measure is called the logarithmic negativity. Despite the great success of logarithmic negativity in characterizing bosonic many-body systems, generalizing the partial transpose to fermionic systems remained a technical challenge until recently when a new definition that accounts for the Fermi statistics was put forward. In this paper, we propose a way to generalize the partial transpose to anyons with (non-Abelian) fractional statistics based on the apparent similarity between the partial transpose and the braiding operation. We then define the anyonic version of the logarithmic negativity and show that it satisfies the standard requirements such as monotonicity to be an entanglement measure. In particular, we elucidate the properties of the anyonic logarithmic negativity by computing it for a toy density matrix of a pair of anyons within various categories. We conjecture that the subspace of states with a vanishing logarithmic negativity is a set of measure zero in the entire space of anyonic states, in contrast with the ordinary qubit systems where this subspace occupies a finite volume. We prove this conjecture for multiplicity-free categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源