论文标题

通过激活分析解释深神经分类器的预测

Explaining Predictions of Deep Neural Classifier via Activation Analysis

论文作者

Stano, Martin, Benesova, Wanda, Martak, Lukas Samuel

论文摘要

在许多实际应用中,深度神经网络通常被部署为黑匣子预测因子。尽管在这些系统的可靠性方面做出了很大的作用,但他们通常仍必须将人类演员包括在循环中,以验证决策并处理不可预测的失败和意外的拐角案例。对于关键性失败的应用领域(例如医学诊断),这尤其是如此。我们提出了一种新颖的方法,以解释并支持基于卷积神经网络(CNN)的深度学习系统的人类专家对决策过程的解释。通过通过高斯混合模型(GMM)对经过训练的CNN的选定层进行激活统计,我们在二进制矢量空间中开发了一种新颖的感知代码,该代码描述了如何由CNN处理输入样本。通过在此知觉编码空间中测量样品对之间的距离,对于任何新的输入样本,我们现在可以从现有的标记样品中的现有地图集中检索一组最相似和不同的样本,以支持和阐明CNN模型做出的决策。这种方法的可能用途包括与医学成像数据一起工作的计算机辅助诊断(CAD)系统,例如磁共振成像(MRI)或计算机断层扫描(CT)扫描。我们证明了方法在患者状况诊断的医学成像领域中的生存能力,因为通过类似的地面真实领域示例(例如,从现有诊断档案中)提出的决策解释方法将由手术医疗人员解释​​。我们的结果表明,我们的方法能够检测到不同的预测策略,使我们能够从现有地图集中确定最相似的预测。

In many practical applications, deep neural networks have been typically deployed to operate as a black box predictor. Despite the high amount of work on interpretability and high demand on the reliability of these systems, they typically still have to include a human actor in the loop, to validate the decisions and handle unpredictable failures and unexpected corner cases. This is true in particular for failure-critical application domains, such as medical diagnosis. We present a novel approach to explain and support an interpretation of the decision-making process to a human expert operating a deep learning system based on Convolutional Neural Network (CNN). By modeling activation statistics on selected layers of a trained CNN via Gaussian Mixture Models (GMM), we develop a novel perceptual code in binary vector space that describes how the input sample is processed by the CNN. By measuring distances between pairs of samples in this perceptual encoding space, for any new input sample, we can now retrieve a set of most perceptually similar and dissimilar samples from an existing atlas of labeled samples, to support and clarify the decision made by the CNN model. Possible uses of this approach include for example Computer-Aided Diagnosis (CAD) systems working with medical imaging data, such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) scans. We demonstrate the viability of our method in the domain of medical imaging for patient condition diagnosis, as the proposed decision explanation method via similar ground truth domain examples (e.g. from existing diagnosis archives) will be interpretable by the operating medical personnel. Our results indicate that our method is capable of detecting distinct prediction strategies that enable us to identify the most similar predictions from an existing atlas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源