论文标题
航空图像的语义分割的域适应
Domain Adaptation on Semantic Segmentation for Aerial Images
论文作者
论文摘要
近年来,语义细分取得了重大进展。尽管深度神经网络的语义细分表现良好,但他们的成功依赖于昂贵且耗时的像素级别的监督。此外,由于不同域中的数据分布之间的域间隙,使用来自一个域的数据进行培训可能无法很好地概括到来自新域的数据。在空中图像中,该域间隙尤其明显,在空中图像中,视觉外观取决于对环境成像的成像,季节,天气和一天中的环境类型。随后,当使用鉴定分割模型分析具有不同特征的新数据时,这种分布差距会导致严重的准确性损失。在本文中,我们提出了一个新颖的无监督域适应框架,以解决空中语义图像分割的背景下的域转移。为此,我们通过学习源域和目标域之间的软标签分布差来解决域移动问题。此外,我们还对目标结构域应用了熵最小化,以产生高度自信的预测,而不是通过伪标记使用高键的预测。我们使用ISPR的挑战图像分割数据集证明了我们的域适应框架的有效性,并在各种指标方面显示了对最新方法的改进。
Semantic segmentation has achieved significant advances in recent years. While deep neural networks perform semantic segmentation well, their success rely on pixel level supervision which is expensive and time-consuming. Further, training using data from one domain may not generalize well to data from a new domain due to a domain gap between data distributions in the different domains. This domain gap is particularly evident in aerial images where visual appearance depends on the type of environment imaged, season, weather, and time of day when the environment is imaged. Subsequently, this distribution gap leads to severe accuracy loss when using a pretrained segmentation model to analyze new data with different characteristics. In this paper, we propose a novel unsupervised domain adaptation framework to address domain shift in the context of aerial semantic image segmentation. To this end, we solve the problem of domain shift by learn the soft label distribution difference between the source and target domains. Further, we also apply entropy minimization on the target domain to produce high-confident prediction rather than using high-confident prediction by pseudo-labeling. We demonstrate the effectiveness of our domain adaptation framework using the challenge image segmentation dataset of ISPRS, and show improvement over state-of-the-art methods in terms of various metrics.