论文标题
GBD理论的Palatini形式主义中的线性化物理和重力波会极化
Linearized physics and gravitational-waves polarizations in the Palatini formalism of GBD theory
论文作者
论文摘要
本文提出了Palatini形式主义框架中的广义Brans-Dicke(GBD)理论。我们通过使用变分方法来得出场方程,并使用弱场近似方法获得线性化方程。我们在GBD理论的palatini形式上显示了几何标量场的各种特性:它是无质量的,无源的,这与GBD理论的度量 - 正态主义所给出的结果不同。此外,我们通过使用Palatini-GBD理论中的Geodesic偏差方法和Newman-Penrose方法研究重力波(GWS)的极化模式。据观察,Palatini-GBD理论中有三种极化模式和四个振荡。具体而言,它们是两个横向张量($+$)和($ \ times $)标准极化模式,以及一种呼吸模式(具有两个振荡)。 palatini-GBD理论中GWS极化的结果与公表示的GBD理论不同,其中有四种极化模式:两种标准的张力模式($+$和$ \ times $),标量呼吸模式,以及一种巨大的标量模式,是远程和呼吸极化的混合。与palatini- $ f(\ tilde {r})$理论和一般相对论相比,我们可以看到GWS极化的额外呼吸模式可以在Palatini-GBD理论中找到。最后,得出了参数化后牛顿(PPN)参数的表达,可以通过实验测试。
A generalized Brans-Dicke (GBD) theory in the framework of Palatini formalism are proposed in this paper. We derive the field equations by using the variational approach and obtain the linearized equations by using the weak-field approximation method. We show various properties of the geometrical scalar field in the Palatini-formalism of GBD theory: it is massless and source-free, which are different from the results given in the metric-formalism of GBD theory. Also, we investigate the polarization modes of gravitational waves (GWs) by using the the geodesic deviation method and the Newman-Penrose method in the Palatini-GBD theory. It is observed that there are three polarizations modes and four oscillation in the Palatini-GBD theory. Concretely, they are the two transverse tensor ($+$) and ($\times$) standard polarization modes, and one breathing mode (with two oscillation). The results of GWs polarization in the Palatini-GBD theory are different from that in the metric-GBD theory, where there are four polarizations modes: the two standard tensorial modes ($+$ and $\times$), a scalar breathing mode, and a massive scalar mode that is a mix of the longitudinal and the breathing polarization. Comparing with the Palatini-$f(\tilde{R})$ theory and the General Relativity, we can see that the extra breathing mode of GWs polarization can be found in the Palatini-GBD theory. At last, the expression of the parameterized post Newton (PPN) parameter is derived, which could pass through the experimental test.