论文标题

应用Chebyshev-Tau光谱法解决海洋声学中广角有理近似的抛物线方程模型

Applying the Chebyshev-Tau spectral method to solve the parabolic equation model of wide-angle rational approximation in ocean acoustics

论文作者

Tu, Houwang, Wang, Yongxian, Ma, Xian, Zhu, Xunjiang

论文摘要

对于许多现有的海洋声学模型,使用抛物线近似求解声波方程是一种流行的方法。常用的抛物线方程(PE)模型程序,例如依赖范围的声学模型(RAM),通过有限差异方法(FDM)离散。考虑到广角合理近似的思想和理论,得出了使用Chebyshev光谱法(CSM)的离散PE模型,并开发了代码。此方法目前仅适用于独立的波导。以三个理想的流体波导为示例,验证了使用CSM离散PE模型解决水下声学传播问题的正确性。测试结果表明,与RAM相比,本文提出的方法可以在计算水下声学上获得更高的准确性,并且需要更少的离散网格点。优化后,此方法在速度方面比FDM更有利。因此,CSM为独立于范围的PE模型的基准示例提供了高精度参考标准。

Solving an acoustic wave equation using a parabolic approximation is a popular approach for many existing ocean acoustic models. Commonly used parabolic equation (PE) model programs, such as the range-dependent acoustic model (RAM), are discretized by the finite difference method (FDM). Considering the idea and theory of the wide-angle rational approximation, a discrete PE model using the Chebyshev spectral method (CSM) is derived, and the code is developed. This method is currently suitable only for range-independent waveguides. Taking three ideal fluid waveguides as examples, the correctness of using the CSM discrete PE model in solving the underwater acoustic propagation problem is verified. The test results show that compared with the RAM, the method proposed in this paper can achieve higher accuracy in computational underwater acoustics and requires fewer discrete grid points. After optimization, this method is more advantageous than the FDM in terms of speed. Thus, the CSM provides high-precision reference standards for benchmark examples of the range-independent PE model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源