论文标题
浸入网络的各向异性曲率流
Anisotropic curvature flow of immersed networks
论文作者
论文摘要
我们考虑通过三曲线的网络的各向异性曲率进行运动,这些网络是在三重连接处浸入平面会议中的三个曲线,另一端固定了另一端。我们显示出最大几何解的存在,独特性和规律性,我们证明,如果最大时间是有限的,那么其中一条曲线的长度将变为零或各向异性曲率的$ l^2 $ norm,则吹出。
We consider motion by anisotropic curvature of a network of three curves immersed in the plane meeting at a triple junction and with the other ends fixed. We show existence, uniqueness and regularity of a maximal geometric solution and we prove that, if the maximal time is finite, then either the length of one of the curves goes to zero or the $L^2$ norm of the anisotropic curvature blows up.