论文标题

DAFI:基于整体数据同化和现场反演的开源框架

DAFI: An Open-Source Framework for Ensemble-Based Data Assimilation and Field Inversion

论文作者

Ströfer, Carlos A. Michelén, Zhang, Xin-Lei, Xiao, Heng

论文摘要

在科学和工程的许多领域,从稀疏观察中推断出物理领域是一项普遍的任务。本文介绍了DAFI代码,旨在作为这两个逆向问题的柔性框架:数据同化和现场反转。 Dafi将这些多样化的问题概括为一般配方,并使用集合Kalman Filters(一个基于合奏的,无衍生物的贝叶斯方法)来解决它。这种贝叶斯方法具有提供内置不确定性量化的额外优势。此外,该代码提供了执行与随机字段相关的常见任务以及与开源有限卷工具OpenFOAM集成的I/O实用程序的工具。代码功能通过几个测试用例展示,包括洛伦兹动态系统的状态和参数估计,扩散方程的现场反演以及不确定性量化。代码的面向对象的性质允许轻松互换不同的解决方案方法和不同的物理问题。它为用户提供了一个简单的接口,以提供其特定领域的物理模型。最后,该代码可以用作基于新的集合数据同化和现场反转方法的测试床。

In many areas of science and engineering, it is a common task to infer physical fields from sparse observations. This paper presents the DAFI code intended as a flexible framework for two broad classes of such inverse problems: data assimilation and field inversion. DAFI generalizes these diverse problems into a general formulation and solves it with ensemble Kalman filters, a family of ensemble-based, derivative-free, Bayesian methods. This Bayesian approach has the added advantage of providing built-in uncertainty quantification. Moreover, the code provides tools for performing common tasks related to random fields, as well as I/O utilities for integration with the open-source finite volume tool OpenFOAM. The code capabilities are showcased through several test cases including state and parameter estimation for the Lorenz dynamic system, field inversion for the diffusion equations, and uncertainty quantification. The object-oriented nature of the code allows for easily interchanging different solution methods and different physics problems. It provides a simple interface for the users to supply their domain-specific physics models. Finally, the code can be used as a test-bed for new ensemble-based data assimilation and field inversion methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源