论文标题

网络上的鲁棒性

Robustness on Networks

论文作者

Papamichalis, Marios, Lunagomez, Simon, Wolfe, Patrick J.

论文摘要

我们采用了Watson和Holmes在2016年提出的关于鲁棒性的统计框架,然后应对阻碍其适用于网络模型的实际挑战。目的是评估当假定的模型被误指定时,网络特征的推断质量如何降低。旨在识别模型错过的决策理论方法是在网络数据的背景下应用的,目的是研究最佳动作对对假定模型的扰动的稳定性。在此,该模型的修改版本包含在模型空间的明确定义的社区中。我们的主要挑战是结合随机优化和图形限制工具以探索模型空间。结果,开发了可交换随机网络的鲁棒性方法。我们的方法的灵感来自最新的发展,在鲁棒性和最新作品中,在稳健控制,宏观经济学和金融数学文献中,更具体地是基于通过其经验图形镜的Graphon近似概念。

We adopt the statistical framework on robustness proposed by Watson and Holmes in 2016 and then tackle the practical challenges that hinder its applicability to network models. The goal is to evaluate how the quality of an inference for a network feature degrades when the assumed model is misspecified. Decision theory methods aimed to identify model missespecification are applied in the context of network data with the goal of investigating the stability of optimal actions to perturbations to the assumed model. Here the modified versions of the model are contained within a well defined neighborhood of model space. Our main challenge is to combine stochastic optimization and graph limits tools to explore the model space. As a result, a method for robustness on exchangeable random networks is developed. Our approach is inspired by recent developments in the context of robustness and recent works in the robust control, macroeconomics and financial mathematics literature and more specifically and is based on the concept of graphon approximation through its empirical graphon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源