论文标题
多年延迟了伽马射线和无线电余星,起源于TDE风腹相互作用
Years Delayed Gamma-ray and Radio Afterglows Originated from TDE Wind-Torus Interactions
论文作者
论文摘要
带有尘土飞扬的托里的活性银河核(AGN)中发生的潮汐破坏事件(TDE)是一类特殊的来源。 TDE可以产生超快和大开眼界的风,几年后,几年后,TDE爆发后几乎不可避免地会与先前存在的Agn Dusty Tori发生碰撞。风腹相互作用驱动了两种冲击:在圆环云的迎风侧的弓冲击,以及圆环云中的云冲击。在先前的工作中,我们证明了震惊的云将产生可观的X射线排放,可以达到$ 10^{41-42} $ erg s $^{ - 1} $(所谓的\ emph {年延迟x射线exterglows})。在这项工作中,我们专注于在两种冲击下加速的高能颗粒的辐射。受益于圆环内边缘的强辐射场,在弓形冲击的相对论电子中,Agn光子的反向康普顿散射主导了整个伽马射线辐射。伽马射线光度可以达到$ 10^{41}〜{\ rm erg s^{ - 1}}}(l _ {\ rm kin}/10^{45} {\ rm erg s^{ - 1}}}})$弓冲击时的同步辐射有助于无线电余泽,其发光度为10 $^{38-39}〜{\ rm erg s^{ - 1}}(l _ {\ rm kin}/kin}/10^{45} {45} {45} {45} {\ rm erg S^{\ rm erg s^{ - 1}}以$ \ sim 10^{39-40}〜{\ rm erg s^{ - 1}}}(l _ {\ rm kin}/10^{45} {\ rm erg s^{ - 1}})$延伸至红外线。我们的方案提供了对TDE多个波段延迟余星的年份的预测,并揭示了它们的连接。
Tidal disruption events (TDEs) that occur in active galactic nuclei (AGN) with dusty tori are a special class of sources. TDEs can generate ultrafast and large opening-angle wind, which will almost inevitably collide with the preexisting AGN dusty tori a few years later after the TDE outburst. The wind-torus interactions drive two kinds of shocks: the bow shocks at the windward side of the torus clouds, and the cloud shocks inside the torus clouds. In a previous work, we proved that the shocked clouds will give rise to considerable X-ray emissions which can reach $10^{41-42}$ erg s$^{-1}$ (so called \emph{years delayed X-ray afterglows}). In this work, we focus on the radiations of high energy particles accelerated at both shocks. Benefitting from the strong radiation field at the inner edge of the torus, the inverse Compton scatterings of AGN photons by relativistic electrons at bow shocks dominate the overall gamma-ray radiation. The gamma-ray luminosity can reach $10^{41}~{\rm erg s^{-1}} (L_{\rm kin}/10^{45}{\rm erg s^{-1}})$, where $L_{\rm kin}$ is the kinetic luminosity of TDE wind. Synchrotron radiation at bow shocks contributes to the radio afterglow with a luminosity of 10$^{38-39} ~{\rm erg s^{-1}} (L_{\rm kin}/10^{45}{\rm erg s^{-1}})$ at 1-10 GHz if the magnetic field is 100 mGauss, and extends to infrared with a luminosity of $\sim 10^{39-40}~{\rm erg s^{-1}} (L_{\rm kin}/10^{45}{\rm erg s^{-1}})$. Our scenario provides a prediction of the years delayed afterglows in multiple wavebands for TDEs and reveals their connections.