论文标题

紧凑的分布式交互式证明,以识别cographs和远距离遗传图

Compact Distributed Interactive Proofs for the Recognition of Cographs and Distance-Hereditary Graphs

论文作者

Montealegre, Pedro, Ramírez-Romero, Diego, Rapaport, Iván

论文摘要

我们提出了紧凑的分布式交互式证明,以识别两个重要的图类别,这些类别在集中算法的背景下进行了良好的研究,即补充还原可还原的图和距离遗传图。补体还原图(也称为Cobhaphs)定义为未包含四节点路径$ p_4 $作为诱导子图的图形。远距离遗传图是一流的Coptragraphs,被定义为在每个引起的连接子图中,任何一对顶点之间距离(​​最短路径)的图形(最短路径)相同。 首先,我们证明存在一个分布式的交互式证明,以识别两轮相互作用的Cographs。更准确地说,我们给出了$ \ mathsf {dam} $协议,其证明大小为$ \ Mathcal {o}(\ log n)$ bits,该$ bits使用共享随机性并识别具有很高概率的Cographs。此外,可以对我们的协议进行调整,以验证$ \ Mathsf {DAMSF {DAM} $的任何图灵可确定的谓词,并具有尺寸$ \ Mathcal {o}证书(\ log n)$。 其次,我们给出了一个三轮,$ \ mathsf {dmam} $交互式协议,用于识别距离式式图形,但仍具有$ \ natercal {o}(\ log n)$位的证明大小,也使用共享的随机性。 最后,我们表明,用于识别Cographs或远距离遗传图的任何一轮(表示为$ \ Mathsf {dm} $)或两轮,$ \ Mathsf {dma} $协议都需要大小$ω(\ log n)$位的证书。此外,我们表明,使用共享随机性的任何常数$ \ Mathsf {dam} $协议都需要大小$ω(\ log \ log \ log n)$的证书。

We present compact distributed interactive proofs for the recognition of two important graph classes, well-studied in the context of centralized algorithms, namely complement reducible graphs and distance-hereditary graphs. Complement reducible graphs (also called cographs) are defined as the graphs not containing a four-node path $P_4$ as an induced subgraph. Distance-hereditary graphs are a super-class of cographs, defined as the graphs where the distance (shortest paths) between any pair of vertices is the same on every induced connected subgraph. First, we show that there exists a distributed interactive proof for the recognition of cographs with two rounds of interaction. More precisely, we give a $\mathsf{dAM}$ protocol with a proof size of $\mathcal{O}(\log n)$ bits that uses shared randomness and recognizes cographs with high probability. Moreover, our protocol can be adapted to verify any Turing-decidable predicate restricted to cographs in $\mathsf{dAM}$ with certificates of size $\mathcal{O}(\log n)$. Second, we give a three-round, $\mathsf{dMAM}$ interactive protocol for the recognition of distance-hereditary graphs, still with a proof size of $\mathcal{O}(\log n)$ bits and also using shared randomness. Finally, we show that any one-round (denoted $\mathsf{dM}$) or two-round, $\mathsf{dMA}$ protocol for the recognition of cographs or distance-hereditary graphs requires certificates of size $Ω(\log n)$ bits. Moreover, we show that any constant-round $\mathsf{dAM}$ protocol using shared randomness requires certificates of size $Ω(\log \log n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源