论文标题
选择,标记和混合:学习部分域适应的学习区分不变特征表示
Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation
论文作者
论文摘要
局部域的适应性,假设未知目标标签空间是源标签空间的一个子集,引起了计算机视觉的关注。尽管最近取得了进展,但现有方法通常会遇到三个关键问题:负转移,缺乏可区分性和潜在空间中的域不变性。为了减轻上述问题,我们开发了一种新颖的“选择,标签和混合”(SLM)框架,旨在学习部分域适应性的歧视性不变特征表示。首先,我们提出一个有效的“选择”模块,该模块会自动滤除离群源样本,以避免在两个域之间对齐分布时进行负转移。其次,“标签”模块使用标记的源域数据和目标域的生成的伪标签来迭代分类器,以增强潜在空间的可区分性。最后,“混合”模块与其他两个模块共同利用域混合正则化,探索跨域跨域的更固有的结构,从而导致域不变的潜在潜在空间进行部分域的适应。在几个基准数据集上进行部分域适应性的广泛实验证明了我们所提出的框架优于最先进的方法。
Partial domain adaptation which assumes that the unknown target label space is a subset of the source label space has attracted much attention in computer vision. Despite recent progress, existing methods often suffer from three key problems: negative transfer, lack of discriminability, and domain invariance in the latent space. To alleviate the above issues, we develop a novel 'Select, Label, and Mix' (SLM) framework that aims to learn discriminative invariant feature representations for partial domain adaptation. First, we present an efficient "select" module that automatically filters out the outlier source samples to avoid negative transfer while aligning distributions across both domains. Second, the "label" module iteratively trains the classifier using both the labeled source domain data and the generated pseudo-labels for the target domain to enhance the discriminability of the latent space. Finally, the "mix" module utilizes domain mixup regularization jointly with the other two modules to explore more intrinsic structures across domains leading to a domain-invariant latent space for partial domain adaptation. Extensive experiments on several benchmark datasets for partial domain adaptation demonstrate the superiority of our proposed framework over state-of-the-art methods.