论文标题

时空图散射变换

Spatio-Temporal Graph Scattering Transform

论文作者

Pan, Chao, Chen, Siheng, Ortega, Antonio

论文摘要

尽管时空图神经网络在处理多重相关时间序列方面取得了巨大的经验成功,但由于缺乏足够的高质量培训数据,它们在某些实际情况下可能是不切实际的。此外,时空图神经网络缺乏理论解释。为了解决这些问题,我们提出了一个新颖的数学设计框架,以分析时空数据。我们提出的时空图散射变换(ST-GST)将传统散射转换扩展到时空结构域。它执行了时空图小波和非线性激活功能的迭代应用,可以将其视为无需训练的时空图形卷积网络的正向通行证。由于ST-GST中的所有滤波器系数都是数学设计的,因此对于具有有限的训练数据的现实情况而言,这是有希望的,并且还允许进行理论分析,这表明所提出的ST-GST稳定在输入信号和结构的小扰动中。最后,我们的实验表明,i)ST-GST优于时空图卷积网络的表现,MSR Action3D数据集的精度增加了35%; ii)基于可分离时空图设计的转换比关节更好,在计算上更有效; iii)ST-GST中的非线性对于经验表现至关重要。

Although spatio-temporal graph neural networks have achieved great empirical success in handling multiple correlated time series, they may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data. Furthermore, spatio-temporal graph neural networks lack theoretical interpretation. To address these issues, we put forth a novel mathematically designed framework to analyze spatio-temporal data. Our proposed spatio-temporal graph scattering transform (ST-GST) extends traditional scattering transforms to the spatio-temporal domain. It performs iterative applications of spatio-temporal graph wavelets and nonlinear activation functions, which can be viewed as a forward pass of spatio-temporal graph convolutional networks without training. Since all the filter coefficients in ST-GST are mathematically designed, it is promising for the real-world scenarios with limited training data, and also allows for a theoretical analysis, which shows that the proposed ST-GST is stable to small perturbations of input signals and structures. Finally, our experiments show that i) ST-GST outperforms spatio-temporal graph convolutional networks by an increase of 35% in accuracy for MSR Action3D dataset; ii) it is better and computationally more efficient to design the transform based on separable spatio-temporal graphs than the joint ones; and iii) the nonlinearity in ST-GST is critical to empirical performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源