论文标题

通过氧化还原循环后冻结开发的掺杂Fe2O3泡沫的孔形态演化和原子分布

Pore morphology evolution and atom distribution of doped Fe2O3 foams developed by freeze-casting after redox cycling

论文作者

LLoreda-Jurado, P. J., Hernandez-Saz, Jesus, Chicardi, E., Paul, A., Sepulveda, R.

论文摘要

化学环状分裂系统在相对较高的温度(450-800级)下运行,以通过固体氧载体的循环还原和氧化(氧化还原)生产,纯化或储存氢。因此,为了改善长期运行,有必要开发具有较大特定表面积的高度稳定的氧气载体。在这项工作中,高度相互连接的掺杂FE2O3泡沫是通过冻结技术制造的,并借助了基于樟脑的亚基悬浮液,以防止在氧化还原操作过程中Fe烧结和孔隙堵塞。检查了掺杂剂元素(AL和CE)对孔形态进化的影响以及氧化还原性能。使用初始孔径高于100微米的Fe2O3多孔结构显示样品致密化显着降低,并且通过共沉淀过程添加AL2O3被证明对防止氧化还原处理后的核心壳结构的产生是有益的。

Chemical looping water splitting systems operate at relatively high temperatures (450-800 degree C) to produce, purify, or store hydrogen by the cyclic reduction and oxidation (redox) of a solid oxygen carrier. Therefore, to improve long-term operation, it is necessary to develop highly stable oxygen carriers with large specific surface areas. In this work, highly interconnected doped Fe2O3 foams are fabricated through the freeze-casting technique, and the aid of a submicrometric camphene-based suspension to prevent Fe sintering and pore clogging during redox operation. The influence of the dopant elements (Al and Ce) over the pore morphology evolution, and redox performances are examined. The use of an Fe2O3 porous structure with initial pore size above 100 microns shows a significant reduction of the sample densification, and the addition of Al2O3 by the co-precipitation process proves to be beneficial in preventing the generation of a core-shell structure following redox processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源