论文标题

大规模地球观察应用的随机内核

Randomized kernels for large scale Earth observation applications

论文作者

Pérez-Suay, Adrián, Amorós-López, Julia, Gómez-Chova, Luis, Laparra, Valero, Muñoz-Marí, Jordi, Camps-Valls, Gustau

论文摘要

处理新图像来源的土地覆盖分类也变成了一个复杂的问题,需要大量的内存和处理时间。为了解决这些问题,统计学习在过去几年中有很大帮助,以开发统计检索和分类模型,这些模型可以吸收大量的地球观察数据。内核方法构成了强大的机器学习算法的家族,这些算法在遥感和地球科学中发现了广泛使用。但是,由于处理大规模问题时的计算成本很高,例如辐射转移模型的反转或高空间 - 频谱 - 周期性分辨率数据的分类,因此内核方法仍未被广泛采用。本文介绍了一种有效的内核方法,用于快速统计检索生物形态学参数和图像分类问题。该方法允许在从傅立叶域采样的随机碱基上近似一组投影的内核矩阵。该方法在内存和处理成本上都非常有效,在计算上非常有效,并且很容易平行。我们表明,对于具有数百万个示例和高维度的数据集,现在可以进行内核回归和分类。从IASI/METOP等高光谱红外发声器中检索大气参数的示例; Sentinel-2数据上熟悉的Prosail辐射转移模型的大规模仿真和反转;在味精/塞维里图像的时间序列中对云的识别显示了提出的技术的效率和有效性。

Dealing with land cover classification of the new image sources has also turned to be a complex problem requiring large amount of memory and processing time. In order to cope with these problems, statistical learning has greatly helped in the last years to develop statistical retrieval and classification models that can ingest large amounts of Earth observation data. Kernel methods constitute a family of powerful machine learning algorithms, which have found wide use in remote sensing and geosciences. However, kernel methods are still not widely adopted because of the high computational cost when dealing with large scale problems, such as the inversion of radiative transfer models or the classification of high spatial-spectral-temporal resolution data. This paper introduces an efficient kernel method for fast statistical retrieval of bio-geo-physical parameters and image classification problems. The method allows to approximate a kernel matrix with a set of projections on random bases sampled from the Fourier domain. The method is simple, computationally very efficient in both memory and processing costs, and easily parallelizable. We show that kernel regression and classification is now possible for datasets with millions of examples and high dimensionality. Examples on atmospheric parameter retrieval from hyperspectral infrared sounders like IASI/Metop; large scale emulation and inversion of the familiar PROSAIL radiative transfer model on Sentinel-2 data; and the identification of clouds over landmarks in time series of MSG/Seviri images show the efficiency and effectiveness of the proposed technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源