论文标题
分析柔软的实心层,以在流动过程中被动地控制符合符合微通道的导管形状
Profiling a soft solid layer to passively control the conduit shape in a compliant microchannel during flow
论文作者
论文摘要
流经它的流动过程中的微通道的形状对理解控制各种现象的物理学对从流体测量到颗粒和细胞的分离等各种现象。获得所需通道形状的两种常用方法(对于给定的应用)是(i)以必要形状制造微通道,并在流动过程中(ii)在流动过程中驱动微通道壁以获得必要的形状。但是,这些方法并不总是可行的。我们提出了一种替代的,被动的方法,用于{\ it先验}调整微型系统中的弹性水力动力学,以实现预定的(但不是预先制作的)流量几何形状时,微通道可进行流动。也就是说,我们使用柔软的实心层,其下方的粘性流与其上方的刚性壁之间的相互作用来调整流体结构域的形状。具体而言,我们研究了平行壁的微通道,其顶壁是固定平台上的任意厚度的细长软涂层。我们为软涂层的流体 - 固体界面提供了一个非线性微分方程,我们用来推断如何在流动过程中实现特定的导管形状。使用该理论,我们证明了四类微通道几何形状的调整,这些几何形状是通过概念验看建立我们建模框架的可行性。我们还探索了微通道的刚性底部壁上的滑动长度图案,这是一种微流体中的常见技术,是微通道形状控制的添加“手柄”。但是,我们表明这种效果在实践中要弱得多。
The shape of a microchannel during flow through it is instrumental to understanding the physics that govern various phenomena ranging from rheological measurements of fluids to separation of particles and cells. Two commonly used approaches for obtaining a desired channel shape (for a given application) are (i) fabricating the microchannel in the requisite shape and (ii) actuating the microchannel walls during flow to obtain the requisite shape. However, these approaches are not always viable. We propose an alternative, passive approach to {\it a priori} tune the elastohydrodynamics in a microsystem, towards achieving a pre-determined (but not pre-fabricated) flow geometry when the microchannel is subjected to flow. That is to say, we use the interaction between a soft solid layer, the viscous flow beneath it and the shaped rigid wall above it, to tune the fluid domain's shape. Specifically, we study a parallel-wall microchannel whose top wall is a slender soft coating of arbitrary thickness attached to a rigid platform. We derive a nonlinear differential equation for the soft coating's fluid--solid interface, which we use to infer how to achieve specific conduit shapes during flow. Using this theory, we demonstrate the tuning of four categories of microchannel geometries, which establishes, via a proof-of-concept, the viability of our modeling framework. We also explore slip length patterning on the rigid bottom wall of the microchannel, a common technique in microfluidics, as an addition `handle' for microchannel shape control. However, we show that this effect is much weaker in practice.