论文标题
用离子陷阱量子计算机生成高分辨率手写数字
Generation of High-Resolution Handwritten Digits with an Ion-Trap Quantum Computer
论文作者
论文摘要
生成高质量的数据(例如图像或视频)是无监督的机器学习中最令人兴奋和最具挑战性的前沿之一。在此类任务中利用量子计算机有可能增强传统的机器学习算法是有希望的应用程序,但是由于量子数量有限,并且在可用设备中的门噪声水平构成了巨大的挑战。在这项工作中,我们提供了第一个实用和实验实现的实现,该实现能够使用基于最先进的栅极量子计算机生成手写数字的高分辨率图像。在我们的量子辅助机器学习框架中,我们实施了基于量子电路的生成模型,以学习和采样生成对抗网络的先前分布。我们引入了一种多基础技术,该技术利用了在不同碱基中测量量子状态的独特可能性,从而增强了先前分布的表现力。我们在基于$^{171} $ yb $^{+} $ ion Qubits上的离子陷阱设备上训练该混合算法,以生成高质量的图像,并在数量上优于在受欢迎的MNIST数据设置的Mnist Mnist Data设置的训练中,均优于可比较的古典生成对抗网络。
Generating high-quality data (e.g. images or video) is one of the most exciting and challenging frontiers in unsupervised machine learning. Utilizing quantum computers in such tasks to potentially enhance conventional machine learning algorithms has emerged as a promising application, but poses big challenges due to the limited number of qubits and the level of gate noise in available devices. In this work, we provide the first practical and experimental implementation of a quantum-classical generative algorithm capable of generating high-resolution images of handwritten digits with state-of-the-art gate-based quantum computers. In our quantum-assisted machine learning framework, we implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network. We introduce a multi-basis technique that leverages the unique possibility of measuring quantum states in different bases, hence enhancing the expressivity of the prior distribution. We train this hybrid algorithm on an ion-trap device based on $^{171}$Yb$^{+}$ ion qubits to generate high-quality images and quantitatively outperform comparable classical Generative Adversarial Networks trained on the popular MNIST data set for handwritten digits.