论文标题

语义和几何建模与神经消息传递在3D场景图中,用于层次机械搜索

Semantic and Geometric Modeling with Neural Message Passing in 3D Scene Graphs for Hierarchical Mechanical Search

论文作者

Kurenkov, Andrey, Martín-Martín, Roberto, Ichnowski, Jeff, Goldberg, Ken, Savarese, Silvio

论文摘要

在室内有组织的环境(例如房屋或办公室)中搜索物体是我们日常活动的一部分。在寻找目标对象时,我们共同推理房间和容器可能会在物体中;相同类型的容器将具有不同的概率,即取决于其所在的房间。我们还将几何信息和语义信息结合起来,以推断哪些容器最好搜索,或者如果目标对象隐藏在视图中,则最好移动哪些其他对象。我们建议使用3D场景图表示该问题的层次,语义和几何方面。为了在搜索过程中利用此表示形式,我们引入了层次机械搜索(HMS),该方法指导代理商的行动寻找具有自然语言描述指定的目标对象。 HMS基于一种新型的神经网络体系结构,该架构使用具有视觉,几何和语言信息的向量传递的神经信息传递,以使HMS在结合语义和几何线索的同时跨图层进行推理。在500 3D场景图的新型数据集上评估了HMS,其在存储位置中具有密集的语义相关对象的位置,并且显示出在寻找对象的几个基线的情况下明显好于几个基线,并且根据所需动作的中位数数量。可以在https://ai.stanford.edu/mech-search/hms上找到其他定性结果。

Searching for objects in indoor organized environments such as homes or offices is part of our everyday activities. When looking for a target object, we jointly reason about the rooms and containers the object is likely to be in; the same type of container will have a different probability of having the target depending on the room it is in. We also combine geometric and semantic information to infer what container is best to search, or what other objects are best to move, if the target object is hidden from view. We propose to use a 3D scene graph representation to capture the hierarchical, semantic, and geometric aspects of this problem. To exploit this representation in a search process, we introduce Hierarchical Mechanical Search (HMS), a method that guides an agent's actions towards finding a target object specified with a natural language description. HMS is based on a novel neural network architecture that uses neural message passing of vectors with visual, geometric, and linguistic information to allow HMS to reason across layers of the graph while combining semantic and geometric cues. HMS is evaluated on a novel dataset of 500 3D scene graphs with dense placements of semantically related objects in storage locations, and is shown to be significantly better than several baselines at finding objects and close to the oracle policy in terms of the median number of actions required. Additional qualitative results can be found at https://ai.stanford.edu/mech-search/hms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源