论文标题
改进的蜂群工程:对齐直觉和分析
Improved Swarm Engineering: Aligning Intuition and Analysis
论文作者
论文摘要
我们提供一组旨在补充设计师直觉的指标,在设计蜂群系统时,提高了从算法描述和小型测试实验中推断群体行为的准确性,并导致更快,成本较低的设计周期。我们基于以前研究自主系统中自组织行为的作品,以得出群体新兴自组织的指标。我们利用高性能计算,时间序列分析和排队理论的技术来得出群的可伸缩性,灵活性,对不断变化的外部环境的灵活性以及对内部系统刺激的鲁棒性,例如传感器和执行器噪声和机器人故障。 我们通过在两种情况下分析四种不同的控制算法来证明我们的指标的实用性:带有静态对象的室内仓库对象传输方案以及带有移动对象的空间不受限制的户外搜索和救援方案。在空间限制的仓库方案中,有效利用空间是成功的关键,因此最合适的算法是使用机制来进行交通调节和减少交通拥堵的算法。在搜索和救援方案中,算法也会发生同样的情况,这些算法可以通过动态任务分配和随机搜索轨迹很好地应对对象运动。我们表明,我们关于比较算法性能的直觉得到了使用我们的指标获得的定量结果的很好的支持,并且在某些情况下,基于先前的结果,可以协同使用我们的指标来预测集体行为。
We present a set of metrics intended to supplement designer intuitions when designing swarm-robotic systems, increase accuracy in extrapolating swarm behavior from algorithmic descriptions and small test experiments, and lead to faster and less costly design cycles. We build on previous works studying self-organizing behaviors in autonomous systems to derive a metric for swarm emergent self-organization. We utilize techniques from high performance computing, time series analysis, and queueing theory to derive metrics for swarm scalability, flexibility to changing external environments, and robustness to internal system stimuli such as sensor and actuator noise and robot failures. We demonstrate the utility of our metrics by analyzing four different control algorithms in two scenarios: an indoor warehouse object transport scenario with static objects and a spatially unconstrained outdoor search and rescue scenario with moving objects. In the spatially constrained warehouse scenario, efficient use of space is key to success so algorithms that use mechanisms for traffic regulation and congestion reduction are the most appropriate. In the search and rescue scenario, the same will happen with algorithms which can cope well with object motion through dynamic task allocation and randomized search trajectories. We show that our intuitions about comparative algorithm performance are well supported by the quantitative results obtained using our metrics, and that our metrics can be synergistically used together to predict collective behaviors based on previous results in some cases.