论文标题
使用子空间技术和特征的概率建模的分布式检测
Out-Of-Distribution Detection With Subspace Techniques And Probabilistic Modeling Of Features
论文作者
论文摘要
本文提出了一种用于检测深神经网络(DNN)中分布外(OOD)样本的原则方法。在深度特征上建模概率分布最近已成为一种有效但计算廉价的方法,可检测DNN中的OOD样品。但是,DNN在任何给定层中产生的特征都不能完全占据相应的高维特征空间。我们将线性统计维度降低技术和非线性歧管学习技术应用于高维特征,以捕获特征跨越的真实子空间。我们假设这种较低维的特征嵌入可以减轻维度的诅咒,并增强任何基于特征的方法,以提高性能和有效的性能。在不确定性估计和OOD的背景下,我们表明,从该较低维度的子空间中学到的分布获得的对数可能性得分对于OOD检测更具歧视性。我们还表明,特征重建误差是原始特征和嵌入预图像之间差异的$ l_2 $ norm,对于OOD检测非常有效,在某些情况下,高于对数类样分数。通过检测OOD图像,使用普遍使用的图像数据集(例如CIFAR10,CIFAR100和SVHN)上的流行DNN体系结构来证明我们方法的好处。
This paper presents a principled approach for detecting out-of-distribution (OOD) samples in deep neural networks (DNN). Modeling probability distributions on deep features has recently emerged as an effective, yet computationally cheap method to detect OOD samples in DNN. However, the features produced by a DNN at any given layer do not fully occupy the corresponding high-dimensional feature space. We apply linear statistical dimensionality reduction techniques and nonlinear manifold-learning techniques on the high-dimensional features in order to capture the true subspace spanned by the features. We hypothesize that such lower-dimensional feature embeddings can mitigate the curse of dimensionality, and enhance any feature-based method for more efficient and effective performance. In the context of uncertainty estimation and OOD, we show that the log-likelihood score obtained from the distributions learnt on this lower-dimensional subspace is more discriminative for OOD detection. We also show that the feature reconstruction error, which is the $L_2$-norm of the difference between the original feature and the pre-image of its embedding, is highly effective for OOD detection and in some cases superior to the log-likelihood scores. The benefits of our approach are demonstrated on image features by detecting OOD images, using popular DNN architectures on commonly used image datasets such as CIFAR10, CIFAR100, and SVHN.