论文标题

地图 - 精英实现了模块化机器人技术的强大垫脚石和多样性

MAP-Elites enables Powerful Stepping Stones and Diversity for Modular Robotics

论文作者

Nordmoen, Jørgen, Veenstra, Frank, Ellefsen, Kai Olav, Glette, Kyrre

论文摘要

在模块化机器人技术中,可以重新配置模块以更改机器人的形态,从而能够适应特定的任务。但是,由于微调控制与形态学变化之间的复杂关系,可以优化身体和控制是一个困难的挑战,这些变化可能使这种优化无效。为了解决这一挑战,我们将三种不同的进化算法与它们优化模块化机器人技术优化形态的能力进行了比较。我们将两种基于目标的搜索算法与MAP-ELITE进行比较。为了了解多样性的好处,我们将进化的种群转变为两个困难的环境,以查看多样性是否会对解决复杂环境产生影响。此外,我们将家谱祖先分析,以阐明踏脚石的概念,这是使高性能的关键。结果表明,除了产生最大的形态多样性之外,MAP-Elites能够发展出最高的性能解决方案。对于环境之间的过渡,结果表明,MAP-ELITE通过促进形态学多样性更好地恢复性能。通过对家谱血统的分析,我们表明地图 - 精英比其他基于目标的搜索算法产生的垫脚石更多样化和更高的垫脚石。将种群过渡到更困难的环境显示了形态多样性的实用性,而对踏板石的分析显示,祖先的多样性与运动任务的最高表现之间存在很强的相关性。该论文显示了促进多样性在不同环境中用于模块化机器人技术的多样性的优势。通过证明进化算法中垫脚石的质量和多样性是整体绩效的重要因素,我们开辟了一个新的分析和结果领域。

In modular robotics, modules can be reconfigured to change the morphology of the robot, making it able to adapt for specific tasks. However, optimizing both the body and control is a difficult challenge due to the intricate relationship between fine-tuning control and morphological changes that can invalidate such optimizations. To solve this challenge we compare three different Evolutionary Algorithms on their capacity to optimize morphologies in modular robotics. We compare two objective-based search algorithms, with MAP-Elites. To understand the benefit of diversity we transition the evolved populations into two difficult environments to see if diversity can have an impact on solving complex environments. In addition, we analyse the genealogical ancestry to shed light on the notion of stepping stones as key to enable high performance. The results show that MAP-Elites is capable of evolving the highest performing solutions in addition to generating the largest morphological diversity. For the transition between environments the results show that MAP-Elites is better at regaining performance by promoting morphological diversity. With the analysis of genealogical ancestry we show that MAP-Elites produces more diverse and higher performing stepping stones than the other objective-based search algorithms. Transitioning the populations to more difficult environments show the utility of morphological diversity, while the analysis of stepping stones show a strong correlation between diversity of ancestry and maximum performance on the locomotion task. The paper shows the advantage of promoting diversity for solving a locomotion task in different environments for modular robotics. By showing that the quality and diversity of stepping stones in Evolutionary Algorithms is an important factor for overall performance we have opened up a new area of analysis and results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源