论文标题

Gel'Fand的逆边界问题的定量稳定性

Quantitative stability of Gel'fand's inverse boundary problem

论文作者

Burago, Dmitri, Ivanov, Sergei, Lassas, Matti, Lu, Jinpeng

论文摘要

在Gel'Fand的反问题中,一个人旨在确定紧凑型歧管$ M $的拓扑,差异结构和riemannian指标,并从界限$ \ partial m,$ neumann eigenvalues $λ_j$和特征函数的边界价值和特征函数的边界值$ _j_j_j__j | _ _} $ _} $} $} $} $} $} $} $} $} $} $。我们表明,此问题具有稳定的解决方案,并在具有有界几何形状的一类歧管中具有定量稳定性估计。更确切地说,我们表明,有限的许多特征值和相应特征函数的边界值(已知为小误差)确定了一个与Gromov-Hausdorff Sense中歧管接近的度量空间。我们提供算法来构建此度量空间。该结果基于对波算子唯一延续的稳定性的明确估计。

In Gel'fand's inverse problem, one aims to determine the topology, differential structure and Riemannian metric of a compact manifold $M$ with boundary from the knowledge of the boundary $\partial M,$ the Neumann eigenvalues $λ_j$ and the boundary values of the eigenfunctions $φ_j|_{\partial M}$. We show that this problem has a stable solution with quantitative stability estimates in a class of manifolds with bounded geometry. More precisely, we show that finitely many eigenvalues and the boundary values of corresponding eigenfunctions, known up to small errors, determine a metric space that is close to the manifold in the Gromov-Hausdorff sense. We provide an algorithm to construct this metric space. This result is based on an explicit estimate on the stability of the unique continuation for the wave operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源