论文标题
带有阿贝里亚风味对称性的最小逆剖析机制
Minimal inverse-seesaw mechanism with Abelian flavour symmetries
论文作者
论文摘要
我们研究了补充了Abelian风味对称性的最小$(2,2)$逆启示模型的现象学。为了确保最大的可预测性,我们建立了最限制的风味模式,这些风味模式可以由这些对称性实现。此设置需要在标准模型中添加额外的标量双线和两个复杂的标量单元,并为实施自发的CP违规铺平了道路。结果表明,这种CP侵略效应可以通过标量单元与新的无菌费米子的耦合成功地传达给Lepton部门。事实证明,Majoraana和Dirac CP相很相关,而活动性中微子混合由活性中微子质量确定,混合角度和CP阶段。我们通过当前对Lepton Flavour侵入衰减的实验限制对模型施加的约束进行了研究,尤其是分支比(μ\ rightarroweγ)$和捕获率$ CR(μ-e,{\ rm au})$的限制。鉴于未来的实验搜索对大量无菌中微子的敏感,还讨论了这项工作中提出的框架的前景。也就是说,我们研究了$ \ rightarroweγ$,$μ\ rightarrow 3e $和$μ-e $ $ conversion in nuclei的$μ\ rightarroweγ$的搜索,将能够测试我们的模型,以及未来将未来的高能碰撞器和束缚式实验在这项任务中进行。
We study the phenomenology of the minimal $(2,2)$ inverse-seesaw model supplemented with Abelian flavour symmetries. To ensure maximal predictability, we establish the most restrictive flavour patterns which can be realised by those symmetries. This setup requires adding an extra scalar doublet and two complex scalar singlets to the Standard Model, paving the way to implement spontaneous CP violation. It is shown that such CP-violating effects can be successfully communicated to the lepton sector through couplings of the scalar singlets to the new sterile fermions. The Majorana and Dirac CP phases turn out to be related, and the active-sterile neutrino mixing is determined by the active neutrino masses, mixing angles and CP phases. We investigate the constraints imposed on the model by the current experimental limits on lepton flavour-violating decays, especially those on the branching ratio $BR(μ\rightarrow e γ)$ and the capture rate $CR(μ-e,{\rm Au})$. The prospects to further test the framework put forward in this work are also discussed in view of the projected sensitivities of future experimental searches sensitive to the presence of heavy sterile neutrinos. Namely, we investigate at which extent upcoming searches for $μ\rightarrow e γ$, $μ\rightarrow 3e$ and $μ-e$ conversion in nuclei will be able to test our model, and how complementary will future high-energy collider and beam-dump experiments be in that task.