论文标题
tado:通过双探测器模型的时间变化
TADO: Time-varying Attention with Dual-Optimizer Model
论文作者
论文摘要
基于审核的推荐系统通常用于衡量用户对不同项目的偏好。在本文中,我们专注于解决基于审查的方法中存在的三个主要问题。首先,这些方法遇到了类不平衡的问题,在某种程度上将忽略比例较低的评级水平。因此,它们在相对罕见的评分水平上的性能不令人满意。作为解决此问题的首次尝试,我们提出了一个灵活的双探测器模型,以从回归损失和分类损失中获得鲁棒性。其次,为了解决由单词嵌入的上下文信息提取能力不足引起的问题,我们首先将BERT引入基于审查的方法中以提高语义分析的性能。第三,现有方法忽略了随时间变化的用户偏好的功能信息。因此,我们提出了一个随时间变化的特征提取模块,该模块具有双向长期记忆和多尺度卷积神经网络。之后,提出了一个交互组件,以进一步总结用户项目对的上下文信息。为了验证拟议中的tado的有效性,我们对从亚马逊产品评论中选择的23个基准数据集进行了广泛的实验。与最近提出的几种最新方法相比,我们的模型分别以20.98 \%,9.84 \%和15.46 \%的方式平均获得了ALFM,MPCN和ANR的显着增益。进一步的分析证明了共同使用tado中提出的组件共同进行的必要性。
The review-based recommender systems are commonly utilized to measure users preferences towards different items. In this paper, we focus on addressing three main problems existing in the review-based methods. Firstly, these methods suffer from the class-imbalanced problem where rating levels with lower proportions will be ignored to some extent. Thus, their performance on relatively rare rating levels is unsatisfactory. As the first attempt in this field to address this problem, we propose a flexible dual-optimizer model to gain robustness from both regression loss and classification loss. Secondly, to address the problem caused by the insufficient contextual information extraction ability of word embedding, we first introduce BERT into the review-based method to improve the performance of the semantic analysis. Thirdly, the existing methods ignore the feature information of the time-varying user preferences. Therefore, we propose a time-varying feature extraction module with bidirectional long short-term memory and multi-scale convolutional neural network. Afterward, an interaction component is proposed to further summarize the contextual information of the user-item pairs. To verify the effectiveness of the proposed TADO, we conduct extensive experiments on 23 benchmark datasets selected from Amazon Product Reviews. Compared with several recently proposed state-of-the-art methods, our model obtains significant gain over ALFM, MPCN, and ANR averagely with 20.98\%, 9.84\%, and 15.46\%, respectively. Further analysis proves the necessity of jointly using the proposed components in TADO.