论文标题

$σ$ - 稳定矩阵

$σ$-Stable Matrices

论文作者

Thorne, Michael

论文摘要

引入了$σ$ - 稳定的矩阵,并表明多项式的真实根包括特征多项式的系数表示系数符号变化。然后使用Obrechkoff的证明证明,当$ \ = $σ$ - 稳定矩阵的最大特征值位于$ \ mathbb {r} $中时,系数中最大的真实根是稳定性的最大根。然后讨论系数行为对缩放关系的某些含义。

$σ$-Stable matrices are introduced and it is shown that the real roots of the polynomials comprising the coefficients of the characteristic polynomial indicate the coefficient sign changes. A proof of Obrechkoff is then used to show that the largest real root from the coefficients is the point of stability when the maximal eigenvalue of the $σ$-stable matrix is in $\mathbb{R}$. Some implications of the coefficient behaviour for a scaling relation are then discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源