论文标题
纯自旋电流注射单层单钙化剂
Pure spin current injection of single-layer monochalcogenides
论文作者
论文摘要
我们计算铁电单层SNS,SNSE,GES和GESE中纯自旋电流注入的光谱。形式主义考虑了通过自旋轨道耦合在能量中分裂的光学激发传导状态的连贯旋转动力学。使用密度函数理论在完整的电子带结构方案中,在完整的电子带结构方案中,自旋的速度计算是传入光子能量和线性极化光的角度的函数。我们发现,对于SNS,SNSE,GES和GESE的250、210、180和154 km/s的峰速度比大量半导体(例如CDSE和GAAS)大的数量级要大。有趣的是,自旋速度与光子能量范围的光的极化方向无关。我们的结果表明,单层SNS,SNSE,GES和GESE是为Spintronics应用生产自旋注射的候选者。
We compute the spectrum of pure spin current injection in ferroelectric single-layer SnS, SnSe, GeS, and GeSe. The formalism takes into account the coherent spin dynamics of optically excited conduction states split in energy by spin orbit coupling. The velocity of spins is calculated as a function of incoming photon energy and angle of linearly polarized light within a full electronic band structure scheme using density functional theory. We find peak speeds of 250, 210, 180 and 154 Km/s for SnS, SnSe, GeS and GeSe, respectively which are an order of magnitude larger than those found in bulk semiconductors, e.g., CdSe and GaAs. Interestingly, the spin velocity is independent of the direction of polarization of light in a range of photon energies. Our results demonstrate that single-layer SnS, SnSe, GeS and GeSe are candidates to produce on demand spin-velocity injection for spintronics applications.