论文标题
相互信息衰减曲线和反复神经体系结构的超参数网格搜索设计
Mutual Information Decay Curves and Hyper-Parameter Grid Search Design for Recurrent Neural Architectures
论文作者
论文摘要
我们提出了一种设计网格搜索的方法,以期为复发性神经体系结构进行高参数优化。这种方法的基础是使用共同信息来分析数据集中的长距离依赖关系(LDD)。我们还报告了一组实验,这些实验表明了如何使用这种方法,我们在一系列基准数据集中获得了扩张性的最新结果。
We present an approach to design the grid searches for hyper-parameter optimization for recurrent neural architectures. The basis for this approach is the use of mutual information to analyze long distance dependencies (LDDs) within a dataset. We also report a set of experiments that demonstrate how using this approach, we obtain state-of-the-art results for DilatedRNNs across a range of benchmark datasets.