论文标题

汽车++:统一的内容感知功能重新组装

CARAFE++: Unified Content-Aware ReAssembly of FEatures

论文作者

Wang, Jiaqi, Chen, Kai, Xu, Rui, Liu, Ziwei, Loy, Chen Change, Lin, Dahua

论文摘要

功能重新组装,即功能下采样和上采样,是许多现代卷积网络体系结构(例如残留网络和特征金字塔)中的关键操作。它的设计对于密集的预测任务至关重要,例如对象检测和语义/实例分段。在这项工作中,我们提出了统一的内容感知功能的重新组装(Carafe ++),这是一个实现这一目标的通用,轻巧且高效的操作员。汽车++具有几种吸引人的特性:(1)与传统方法(例如合并和插值)不同,这些方法仅利用子像素邻域,calafe ++在大型接受领域内汇总了上下文信息。 (2)玻璃瓶++不是对所有样品(例如卷积和反卷积)使用固定的内核,而是会在即时生成自适应核,以实现特定于实例的内容感知的处理。 (3)汽车++引入了很少的计算开销,并且可以容易地集成到现代网络架构中。我们在对象检测,实例/语义分割和图像插入中对标准基准进行全面评估。汽车++在所有任务(分别为2.5%的APBox,2.1%APMASK,1.94%MIOU,1.35 dB)中显示出一致且可观的收益,其计算开销可忽略不计。它显示出充当现代深网的强大基础的巨大潜力。

Feature reassembly, i.e. feature downsampling and upsampling, is a key operation in a number of modern convolutional network architectures, e.g., residual networks and feature pyramids. Its design is critical for dense prediction tasks such as object detection and semantic/instance segmentation. In this work, we propose unified Content-Aware ReAssembly of FEatures (CARAFE++), a universal, lightweight and highly effective operator to fulfill this goal. CARAFE++ has several appealing properties: (1) Unlike conventional methods such as pooling and interpolation that only exploit sub-pixel neighborhood, CARAFE++ aggregates contextual information within a large receptive field. (2) Instead of using a fixed kernel for all samples (e.g. convolution and deconvolution), CARAFE++ generates adaptive kernels on-the-fly to enable instance-specific content-aware handling. (3) CARAFE++ introduces little computational overhead and can be readily integrated into modern network architectures. We conduct comprehensive evaluations on standard benchmarks in object detection, instance/semantic segmentation and image inpainting. CARAFE++ shows consistent and substantial gains across all the tasks (2.5% APbox, 2.1% APmask, 1.94% mIoU, 1.35 dB respectively) with negligible computational overhead. It shows great potential to serve as a strong building block for modern deep networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源