论文标题
Stelar:潜在流行病学正则化的时空张量分解
STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological Regularization
论文作者
论文摘要
准确预测流行病(例如Covid-19)的传播对于实施有效的缓解措施至关重要。在这项工作中,我们开发了一种张量方法来同时预测许多地区流行趋势的演变。我们构建了案例计数的三向时空张量(位置,属性,时间),并提出了一个非负张量分解,并使用名为Stelar的潜在流行病学模型正则化。与无法预测前方平板的标准张量分解方法不同,Stelar可以通过通过广泛采用的流行病学模型的离散时间差方程系统纳入潜在的时间正则化来实现长期预测。我们使用潜在的代替位置/属性级流行病学动力学来捕获常见的流行病概况子类型并改善协作学习和预测。我们使用县和州级COVID-19数据进行实验,并表明我们的模型可以识别出有趣的潜在流行模式。最后,我们评估了方法的预测能力并与基线相比表现出卓越的性能,均方根误差降低了21%,县级预测的平均绝对误差降低了25%。
Accurate prediction of the transmission of epidemic diseases such as COVID-19 is crucial for implementing effective mitigation measures. In this work, we develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously. We construct a 3-way spatio-temporal tensor (location, attribute, time) of case counts and propose a nonnegative tensor factorization with latent epidemiological model regularization named STELAR. Unlike standard tensor factorization methods which cannot predict slabs ahead, STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations of a widely adopted epidemiological model. We use latent instead of location/attribute-level epidemiological dynamics to capture common epidemic profile sub-types and improve collaborative learning and prediction. We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic. Finally, we evaluate the predictive ability of our method and show superior performance compared to the baselines, achieving up to 21% lower root mean square error and 25% lower mean absolute error for county-level prediction.