论文标题
衍生非线性schrödinger方程的微观保护法
Microscopic conservation laws for the derivative Nonlinear Schrödinger equation
论文作者
论文摘要
与用于衍生化非线性schrödingger方程(DNLS)溶液的宏观保护法相比,\ cite {klauss:dnls}中的质量很小,我们显示了与小质量小质量的Schwartz溶液的相应微观保护法。新的成分是利用\ cite {rybkin:kdv:cons law,simon:trace}中引入的对数扰动确定因素,以显示一个参数的微观保护法($ a(κ)$流量和dnls的动机,这是由它激励\ cite {hkv:nls,kv:kdv:annmath,kvz:kdv:gafa}。
Compared with macroscopic conservation law for the solution of the derivative nonlinear Schrödingger equation (DNLS) with small mass in \cite{KlausS:DNLS}, we show the corresponding microscopic conservation laws for the Schwartz solutions of DNLS with small mass. The new ingredient is to make use of the logarithmic perturbation determinant introduced in \cite{Rybkin:KdV:Cons Law, Simon:Trace} to show one-parameter family of microscopic conservation laws of the $A(κ)$ flow and the DNLS flow, which is motivated by \cite{HKV:NLS,KV:KdV:AnnMath,KVZ:KdV:GAFA}.