论文标题

注意连接性保持蜘蛛在$ k $连接的图中

Note on the connectivity keeping spiders in $k$-connected graphs

论文作者

Ji, Meng, Mao, Yaping

论文摘要

W. Mader [J. Graph Deoluce 65(2010),61--69]指出,对于任何树的$ t $ t $ m $,每个$ k $连接的图形$ g $,带有$δ(g)\ geq \ lfloor \ lfloor \ frac {3k} {3k} {2} \ rfloor+m-1 $ con $ t $ t $ g- 2010年,Mader确认了$ K $连接的图的猜想,如果$ t $是一条路径;最近,Liu等人。确认了猜想,如果$ k = 2,3 $。猜想以$ k \ geq 4 $开放。在本文中,我们表明,如果$ t $是蜘蛛,而$δ(g)= | g | -1 $,则Mader的猜想是$ K+1 $连接的图形。

W. Mader [J. Graph Theory 65 (2010), 61--69] conjectured that for any tree $T$ of order $m$, every $k$-connected graph $G$ with $δ(G)\geq\lfloor\frac{3k}{2}\rfloor+m-1$ contains a tree $T'\cong T$ such that $G-V(T')$ remains $k$-connected. In 2010, Mader confirmed the conjecture for the $k$-connected graph if $T$ is a path; very recently, Liu et al. confirmed the conjecture if $k=2,3$. The conjecture is open for $k\geq 4$ till now. In this paper, we show that Mader's conjecture is true for the $k+1$-connected graph if $T$ is a spider and $Δ(G)=|G|-1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源