论文标题

仙人掌顶点缺失的改进的确定性参数化算法

An Improved Deterministic Parameterized Algorithm for Cactus Vertex Deletion

论文作者

Aoike, Yuuki, Gima, Tatsuya, Hanaka, Tesshu, Kiyomi, Masashi, Kobayashi, Yasuaki, Kobayashi, Yusuke, Kurita, Kazuhiro, Otachi, Yota

论文摘要

仙人掌是一个连接的图,不包含$ k_4 -e $作为未成年人。给定图形$ g =(v,e)$和整数$ k \ ge 0 $,仙人掌顶点删除(也称为钻石命中套件)是确定$ g $ g $最多有$ k $的顶点$ k $的问题。此问题的当前最佳确定性参数化算法归因于Bonnet等。 [wg 2016],及时运行$ 26^kn^{o(1)} $,其中$ n $是$ g $的顶点。在本文中,我们为仙人掌顶点删除设计了一种确定性算法,该算法的时间为$ 17.64^kn^{o(1)} $。作为我们算法的直接应用,我们给出了$ 17.64^kn^{o(1)} $ - 时间算法,即使循环横向。这种改进背后的想法是通过略有详尽的实例进行衡量和征服分析。

A cactus is a connected graph that does not contain $K_4 - e$ as a minor. Given a graph $G = (V, E)$ and integer $k \ge 0$, Cactus Vertex Deletion (also known as Diamond Hitting Set) is the problem of deciding whether $G$ has a vertex set of size at most $k$ whose removal leaves a forest of cacti. The current best deterministic parameterized algorithm for this problem was due to Bonnet et al. [WG 2016], which runs in time $26^kn^{O(1)}$, where $n$ is the number of vertices of $G$. In this paper, we design a deterministic algorithm for Cactus Vertex Deletion, which runs in time $17.64^kn^{O(1)}$. As a straightforward application of our algorithm, we give a $17.64^kn^{O(1)}$-time algorithm for Even Cycle Transversal. The idea behind this improvement is to apply the measure and conquer analysis with a slightly elaborate measure of instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源