论文标题
依赖山谷的波袋自我旋转和对称性蜂窝状lattices中的zitterbewegung
Valley-dependent wavepacket self-rotation and Zitterbewegung in symmetry-broken honeycomb lattices
论文作者
论文摘要
用于操纵光流的工具箱数量通常包括振幅,相位和极化。假辛(如光子结构中山谷自由度产生的假)最近成为了该工具箱的出色候选者,与凝聚态物理学中的旋转型和谷化曲联合的快速发展同时。在这里,通过采用对称性蜂窝光子晶格,我们演示了依赖山谷的波袋自移,以螺旋强度模式表现出来,这在没有任何初始轨道角动量的情况下发生。从理论上讲,我们证明了这种波袋自动转移是由浆果阶段诱导的,并导致Zitterbewegung振荡。波袋的“质量中心”以间隙依赖性频率振荡,而自移动的螺旋性依赖谷依赖性,即与浆果曲率相关。从拓扑的角度来看,我们的结果使人们对古老的Zitterbewegung现象有了新的了解,并且很容易适用于其他平台,例如二维DIRAC材料和Ultracold Atoms。
The toolbox quantities used for manipulating the flow of light include typically amplitude, phase, and polarization. Pseudospins, such as those arising from valley degrees of freedom in photonic structures, have recently emerged as an excellent candidate for this toolbox, in parallel with rapid development of spintronics and valleytronics in condensed-matter physics. Here, by employing symmetry-broken honeycomb photonic lattices, we demonstrate valley-dependent wavepacket self-rotation manifested in spiraling intensity patterns, which occurs without any initial orbital angular momentum. Theoretically, we show that such wavepacket self-rotation is induced by the Berry phase and results in Zitterbewegung oscillations. The "center-of-mass" of the wavepacket oscillates at a gap-dependent frequency, while the helicity of self-rotation is valley-dependent, that is, correlated with the Berry curvature. Our results lead to new understanding of the venerable Zitterbewegung phenomenon from the perspective of topology and are readily applicable on other platforms such as two-dimensional Dirac materials and ultracold atoms.