论文标题

硅量子点中单个孔的$ g $ tensor的电气控制

Electrical control of the $g$-tensor of a single hole in a silicon MOS quantum dot

论文作者

Liles, S. D., Martins, F., Miserev, D. S., Kiselev, A. A., Thorvaldson, I. D., Rendell, M. J., Jin, I. K., Hudson, F. E., Veldhorst, M., Itoh, K. M., Sushkov, O. P., Ladd, T. D., Dzurak, A. S., Hamilton, A. R.

论文摘要

由于$ g $ - 孔的电可调性,限制在半导体量子点中的单孔是旋转量子技术技术的有前途的平台。但是,由于孔自旋状态的复杂性,使电旋转控制的基本机制尚不清楚。在这里,我们研究了硅平面MOS量子点中第一个孔的基础孔自旋物理。我们表明,不均匀电极诱导的应变会在HH-LH分裂中产生纳米尺度变化。重要的是,我们发现在量子点的活性区域中,HH-LH分裂为50 \%。我们表明,局部电场可用于取代孔相对于不均匀的应变剖面,从而允许新的机制调制孔G量。使用此机制,我们证明了$ g $ factor的调整高达500 \%。此外,我们观察到一个\ rr {势}最佳点,其中d $ g _ {(1 \ overline {1} 0)} $/d $ v $ = 0,提供了一种配置,以抑制由电噪声引起的旋转谐波。这些结果打开了通往以前未开发的技术的途径:\ rr {non-Uriform}应变的工程以优化基于自旋的设备。

Single holes confined in semiconductor quantum dots are a promising platform for spin qubit technology, due to the electrical tunability of the $g$-factor of holes. However, the underlying mechanisms that enable electric spin control remain unclear due to the complexity of hole spin states. Here, we study the underlying hole spin physics of the first hole in a silicon planar MOS quantum dot. We show that non-uniform electrode-induced strain produces nanometre-scale variations in the HH-LH splitting. Importantly, we find that this \RR{non-uniform strain causes} the HH-LH splitting to vary by up to 50\% across the active region of the quantum dot. We show that local electric fields can be used to displace the hole relative to the non-uniform strain profile, allowing a new mechanism for electric modulation of the hole g-tensor. Using this mechanism we demonstrate tuning of the hole $g$-factor by up to 500\%. In addition, we observe a \RR{potential} sweet spot where d$g_{(1\overline{1}0)}$/d$V$ = 0, offering a configuration to suppress spin decoherence caused by electrical noise. These results open a path towards a previously unexplored technology: engineering of \RR{non-uniform} strains to optimise spin-based devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源