论文标题
可能性方程和散射幅度
Likelihood Equations and Scattering Amplitudes
论文作者
论文摘要
我们将粒子物理学中的散射幅度与代数统计中离散模型的最大似然估计联系起来。散射电位起着对数似然函数的作用,其关键点是对理性函数方程的解决方案。我们研究了统计数据中低量张量模型的ML程度,并重新审视了Arkani-Hamed,Cachazo及其合作者提出的物理理论。数值代数几何形状的最新进展用于计算和证明关键点。我们还讨论了积极的模型以及如何计算其弦振幅。
We relate scattering amplitudes in particle physics to maximum likelihood estimation for discrete models in algebraic statistics. The scattering potential plays the role of the log-likelihood function, and its critical points are solutions to rational function equations. We study the ML degree of low-rank tensor models in statistics, and we revisit physical theories proposed by Arkani-Hamed, Cachazo and their collaborators. Recent advances in numerical algebraic geometry are employed to compute and certify critical points. We also discuss positive models and how to compute their string amplitudes.