论文标题

六个Vertex模型中的两点相关函数

The two-point correlation function in the six-vertex model

论文作者

Belov, Pavel, Reshetikhin, Nicolai

论文摘要

我们从数值上研究了具有域壁边界条件的六个Vertex模型中高度函数的两点相关函数。相关函数和高度函数由马尔可夫链蒙特卡洛算法计算。特别注意自由费用点($δ= 0 $),在热力学极限中分析相关函数。对自由费点的确切和数值结果的良好一致性使我们能够将计算扩展到无序($ |δ| <1 $)相,并监视那里相关函数的对数类似行为。对于抗fiferroelectric($Δ<-1 $)相,可以观察到相关函数的指数降低。

We study numerically the two-point correlation functions of height functions in the six-vertex model with domain wall boundary conditions. The correlation functions and the height functions are computed by the Markov chain Monte-Carlo algorithm. Particular attention is paid to the free fermionic point ($Δ=0$), for which the correlation functions are obtained analytically in the thermodynamic limit. A good agreement of the exact and numerical results for the free fermionic point allows us to extend calculations to the disordered ($|Δ|<1$) phase and to monitor the logarithm-like behavior of correlation functions there. For the antiferroelectric ($Δ<-1$) phase, the exponential decrease of correlation functions is observed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源