论文标题

Morphgan:用于检测识别偏见的单发脸合成gan

MorphGAN: One-Shot Face Synthesis GAN for Detecting Recognition Bias

论文作者

Ruiz, Nataniel, Theobald, Barry-John, Ranjan, Anurag, Abdelaziz, Ahmed Hussein, Apostoloff, Nicholas

论文摘要

为了检测面部识别网络中的偏差,使用样本探测正在测试的网络可能是有用的,该样品只有特定属性以某种受控的方式变化。但是,很难捕获一个足够大的数据集,具有对感兴趣属性的特定控制。在这项工作中,我们描述了一个模拟器,该模拟器将特定的头部姿势和面部表达调整应用于以前看不见的人的图像。模拟器首先将3D形态模型拟合到提供的图像,应用所需的头部姿势和面部表达控制,然后将模型渲染到图像中。接下来,以原始图像为条件的条件生成对抗网络(GAN)和渲染的形态模型用于生产具有新的面部表情和头部姿势的原始人的图像。我们称之为条件的gan -morphgan。使用Morphgan生成的图像保留了原始图像中人的身份,并且对头部姿势和面部表达的提供的控制允许创建测试集,以识别面部识别深网的鲁棒性问题,相对于姿势和表达。当培训数据稀缺时,由Morphgan产生的图像也可以用作数据增强。我们表明,通过增强带有新姿势和表达式的面孔的小数据集,根据增强和数据稀缺,可以提高识别性能高达9%。

To detect bias in face recognition networks, it can be useful to probe a network under test using samples in which only specific attributes vary in some controlled way. However, capturing a sufficiently large dataset with specific control over the attributes of interest is difficult. In this work, we describe a simulator that applies specific head pose and facial expression adjustments to images of previously unseen people. The simulator first fits a 3D morphable model to a provided image, applies the desired head pose and facial expression controls, then renders the model into an image. Next, a conditional Generative Adversarial Network (GAN) conditioned on the original image and the rendered morphable model is used to produce the image of the original person with the new facial expression and head pose. We call this conditional GAN -- MorphGAN. Images generated using MorphGAN conserve the identity of the person in the original image, and the provided control over head pose and facial expression allows test sets to be created to identify robustness issues of a facial recognition deep network with respect to pose and expression. Images generated by MorphGAN can also serve as data augmentation when training data are scarce. We show that by augmenting small datasets of faces with new poses and expressions improves the recognition performance by up to 9% depending on the augmentation and data scarcity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源