论文标题
谎言超级乳房的同时学:形式,积分形式和coset超空间
Cohomology of Lie Superalgebras: Forms, Integral Forms and Coset Superspaces
论文作者
论文摘要
我们研究了与超对称理论相关的物理相关的雪佛莉 - 埃伦贝格的同谋,从其毛勒 - 卡丹形式方面为其共生提供了明确的表达。然后,我们通过定义与Lie Superalgebra相关的积分形式的概念来包含整体形式。我们开发了雪佛兰 - 埃伦贝格共同体的合适概括扩展到整体形式,我们证明它对谎言超级男性的普通雪佛莉 - 埃伦贝格的共同学是同构的。接下来,我们研究chevalley-eilenberg的同级共同体学,这在超级重力和超弦模型中起着至关重要的作用。同样,我们明确地处理了几个例子,提供了Cocycles的表达方式并揭示了一个特征性的无限尺寸共同体。
We study Chevalley-Eilenberg cohomology of physically relevant Lie superalgebras related to supersymmetric theories, providing explicit expressions for their cocycles in terms of their Maurer-Cartan forms. We then include integral forms in the picture by defining a notion of integral forms related to a Lie superalgebra. We develop a suitable generalization of Chevalley-Eilenberg cohomology extended to integral forms and we prove that it is isomorphic to the ordinary Chevalley-Eilenberg cohomology of the Lie superalgebra. Next we study equivariant Chevalley-Eilenberg cohomology for coset superspaces, which plays a crucial role in supergravity and superstring models. Again, we treat explicitly several examples, providing cocycles' expressions and revealing a characteristic infinite dimensional cohomology.