论文标题

无监督的对抗领域适应巴雷特的细分

Unsupervised Adversarial Domain Adaptation For Barrett's Segmentation

论文作者

Celik, Numan, Gupta, Soumya, Ali, Sharib, Rittscher, Jens

论文摘要

巴雷特的食管(BE)是食道癌的早期指标之一。监测患有BE的患者并接受消融疗法,以最大程度地降低风险,从而确切地确定该区域。自动分割可以帮助临床内镜医生更准确地评估和治疗区域。除常规白光(WL)模态外,BE的内窥镜成像还包括多种方式。监督模型需要大量的手动注释,并将所有数据可变性纳入培训数据中。但是,生成手动注释变得繁琐,乏味和劳动密集型工作,并且需要特定于模式的专业知识。在这项工作中,我们旨在通过应用无监督的域适应技术(UDA)来减轻此问题。在这里,UDA在白光内窥镜图像上被训练为源域,并得到充分的适应性,以概括以在目标域,即狭窄的频带成像和乙酸后WL成像上的不同成像方式进行分割。我们的数据集由共有871张图像组成,这些图像由源域和目标域组成。我们的结果表明,基于UDA的方法在骰子相似性系数和联合会上的骰子相似性系数和联合会上的传统U-NET细分都超过了10%。

Barrett's oesophagus (BE) is one of the early indicators of esophageal cancer. Patients with BE are monitored and undergo ablation therapies to minimise the risk, thereby making it eminent to identify the BE area precisely. Automated segmentation can help clinical endoscopists to assess and treat BE area more accurately. Endoscopy imaging of BE can include multiple modalities in addition to the conventional white light (WL) modality. Supervised models require large amount of manual annotations incorporating all data variability in the training data. However, it becomes cumbersome, tedious and labour intensive work to generate manual annotations, and additionally modality specific expertise is required. In this work, we aim to alleviate this problem by applying an unsupervised domain adaptation technique (UDA). Here, UDA is trained on white light endoscopy images as source domain and are well-adapted to generalise to produce segmentation on different imaging modalities as target domain, namely narrow band imaging and post acetic-acid WL imaging. Our dataset consists of a total of 871 images consisting of both source and target domains. Our results show that the UDA-based approach outperforms traditional supervised U-Net segmentation by nearly 10% on both Dice similarity coefficient and intersection-over-union.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源