论文标题

使用双时空卷积神经网络对乒乓球的细粒度分类的3D注意机制

3D attention mechanism for fine-grained classification of table tennis strokes using a Twin Spatio-Temporal Convolutional Neural Networks

论文作者

Martin, Pierre-Etienne, Benois-Pineau, Jenny, Péteri, Renaud, Morlier, Julien

论文摘要

本文解决了识别较低阶层变异性的视频中识别动作的问题,例如乒乓球中风。在RGB数据和光流中,使用了两个流的“双”卷积神经网络。动作是通过时间窗口分类来识别的。我们介绍了3D注意模块并检查它们对分类效率的影响。在研究运动员表演的背景下,考虑了乒乓球中风的特定作用的语料库。网络中注意力块的使用加速了训练步骤,并通过我们的双胞胎模型提高了分类得分高达5%。我们可视化对所获得的功能的影响,并注意注意力与播放器运动和位置之间的相关性。在语料库上进行了最新的动作分类方法和提出的方法的分数比较。提出的带有注意力阻滞的模型优于先前的模型,而没有它们和我们的基线。

The paper addresses the problem of recognition of actions in video with low inter-class variability such as Table Tennis strokes. Two stream, "twin" convolutional neural networks are used with 3D convolutions both on RGB data and optical flow. Actions are recognized by classification of temporal windows. We introduce 3D attention modules and examine their impact on classification efficiency. In the context of the study of sportsmen performances, a corpus of the particular actions of table tennis strokes is considered. The use of attention blocks in the network speeds up the training step and improves the classification scores up to 5% with our twin model. We visualize the impact on the obtained features and notice correlation between attention and player movements and position. Score comparison of state-of-the-art action classification method and proposed approach with attentional blocks is performed on the corpus. Proposed model with attention blocks outperforms previous model without them and our baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源