论文标题

一个集成的搜索框架,用于利用基于知识的Web生态系统

An Integrated Search Framework for Leveraging the Knowledge-Based Web Ecosystem

论文作者

Zhu, Dengya, Nimmagadda, Shastri Lakshman, Reiners, Torsten, Rudra, Amit

论文摘要

信息的爆炸构成了与基于知识的Web生态系统(KBWE)相关的搜索词的判断,从而检索了相关信息及其知识管理的挑战。现有的信息检索(IR)工具及其在框架中的融合需要注意,其中可以有效地管理搜索结果。在本文中,我们演示了各种KBWE场景中各种用户和代理商对信息检索服务的有效利用。提出了一个创新的集成搜索框架(ISF),该框架利用爬行策略,Web搜索技术和传统数据库搜索方法。此外,ISF提供了全面,动态,个性化和面向组织的信息检索服务,从互联网,Extranet,Intranet到个人桌面。在这项实证研究中,进行了实验,以证明搜索过程的改进,如概念ISF中所见。实验结果表明,与其他流行的搜索引擎相比,精度提高了。

The explosion of information constrains the judgement of search terms associated with Knowledge-Based Web Ecosystem (KBWE), making the retrieval of relevant information and its knowledge management challenging. The existing information retrieval (IR) tools and their fusion in a framework need attention, in which search results can effectively be managed. In this article, we demonstrate the effective use of information retrieval services by a variety of users and agents in various KBWE scenarios. An innovative Integrated Search Framework (ISF) is proposed, which utilises crawling strategies, web search technologies and traditional database search methods. Besides, ISF offers comprehensive, dynamic, personalized, and organization-oriented information retrieval services, ranging from the Internet, extranet, intranet, to personal desktop. In this empirical research, experiments are carried out demonstrating the improvements in the search process, as discerned in the conceptual ISF. The experimental results show improved precision compared with other popular search engines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源