论文标题
通过感知的风格转移学习增强古代花瓶绘画中的人类姿势估计
Enhancing Human Pose Estimation in Ancient Vase Paintings via Perceptually-grounded Style Transfer Learning
论文作者
论文摘要
人类姿势估计(HPE)是了解艺术品收藏(例如希腊花瓶绘画)中描绘的角色的视觉叙事和身体运动的核心部分。不幸的是,现有的HPE方法并不能很好地跨越范围,从而导致良好的姿势。因此,我们提出了一个两步方法:(1)通过图像样式转移将已知人的自然图像的数据集和姿势注释构成希腊花瓶绘画的样式。我们引入了一种感知的样式转移培训,以执行感知一致性。然后,我们使用此新创建的数据集微调基本模型。我们表明,使用样式转移学习可以显着提高未标记数据的SOTA性能,超过6%的平均平均精度(地图)以及平均平均召回率(MAR)。 (2)为了进一步改善已经很强的结果,我们创建了一个小型数据集(典型),该数据集由公元前6-5世纪的古希腊花瓶绘画组成,并带有人和姿势注释。我们表明,使用样式转让模型对这些数据进行微调可以进一步提高性能。在一项彻底的消融研究中,我们对风格强度的影响进行了针对性的分析,表明该模型学习了通用域样式。此外,我们提供了基于姿势的图像检索,以证明我们方法的有效性。
Human pose estimation (HPE) is a central part of understanding the visual narration and body movements of characters depicted in artwork collections, such as Greek vase paintings. Unfortunately, existing HPE methods do not generalise well across domains resulting in poorly recognized poses. Therefore, we propose a two step approach: (1) adapting a dataset of natural images of known person and pose annotations to the style of Greek vase paintings by means of image style-transfer. We introduce a perceptually-grounded style transfer training to enforce perceptual consistency. Then, we fine-tune the base model with this newly created dataset. We show that using style-transfer learning significantly improves the SOTA performance on unlabelled data by more than 6% mean average precision (mAP) as well as mean average recall (mAR). (2) To improve the already strong results further, we created a small dataset (ClassArch) consisting of ancient Greek vase paintings from the 6-5th century BCE with person and pose annotations. We show that fine-tuning on this data with a style-transferred model improves the performance further. In a thorough ablation study, we give a targeted analysis of the influence of style intensities, revealing that the model learns generic domain styles. Additionally, we provide a pose-based image retrieval to demonstrate the effectiveness of our method.