论文标题
紧张的SI/GE II型异质膜中的电子孔超流体
Electron-hole superfluidity in strained Si/Ge type II heterojunctions
论文作者
论文摘要
激子是在固态设备中产生超流体和玻色的凝结(BEC)的有前途的候选人,但是缺乏具有内置的带构造优势的材料平台,并且缺乏与工业半导体技术的缩放兼容性。在这里,我们预测,在晶格匹配的Si/ge双层中,空间间接的激子嵌入了富含锗的Sige晶体中,会导致可观察到的质量质量感染的电孔孔超流体和BEC。孔将限制在压缩的GE量子孔中,并在晶格匹配的拉伸拉伸的Si量子孔中孔中的电子。我们设想了一个设备体系结构,该架构不需要在SI/GE接口处进行绝缘屏障,因为该接口提供了II型频段对齐。因此,电子和孔可以保持非常近但严格分开,从而增强了电子孔配对的吸引力,同时防止快速电子孔重组。频带对齐还允许一步程序与电子和孔层建立独立的接触,从而克服了设备制造的重要障碍。我们预测,在几个开尔文和载体密度最高$ \ sim 6 \ times 10^{10} $ cm $^{ - 2} $的实验可及温度下的超流量,而电子和孔有效质量的巨大不平衡可以导致异体的超级流体阶段。
Excitons are promising candidates for generating superfluidity and Bose-Einstein Condensation (BEC) in solid state devices, but an enabling material platform with in-built bandstructure advantages and scaling compatibility with industrial semiconductor technology is lacking. Here we predict that spatially indirect excitons in a lattice-matched strained Si/Ge bilayer embedded into a germanium-rich SiGe crystal, would lead to observable mass-imbalanced electron-hole superfluidity and BEC. Holes would be confined in a compressively strained Ge quantum well and electrons in a lattice-matched tensile strained Si quantum well. We envision a device architecture that does not require an insulating barrier at the Si/Ge interface, since this interface offers a type II band alignment. Thus the electrons and holes can be kept very close but strictly separate, strengthening the electron-hole pairing attraction while preventing fast electron-hole recombination. The band alignment also allows a one-step procedure for making independent contacts to the electron and hole layers, overcoming a significant obstacle to device fabrication. We predict superfluidity at experimentally accessible temperatures of a few Kelvin and carrier densities up to $\sim 6\times 10^{10}$ cm$^{-2}$, while the large imbalance of the electron and hole effective masses can lead to exotic superfluid phases.