论文标题
关于MIMO Wiletap通道的保密能力:凸重新印度和有效的数值方法
On the Secrecy Capacity of MIMO Wiretap Channels: Convex Reformulation and Efficient Numerical Methods
论文作者
论文摘要
本文介绍了新的数值方法,可以根据天线功率约束和干扰功率约束来找到受多线性发射协方差约束,包括多个线性传输协方差约束,包括总线性发射协方差约束,包括总和功率约束,包括总线性发射协方差约束。对于此问题的分析解决方案尚不清楚,现有的数值解决方案遭受缓慢的收敛速率和/或高视字书的复杂性。由于保密率表示为发射协方差矩阵的凸函数(DC),因此将计算有效的解决方案推导到保密能力问题上是具有挑战性的,其凸度仅在某些特殊情况下才知道。在本文中,我们提出了两种低复杂性方法,以计算保密能力以及降级通道的凸重新印象。在第一种方法中,我们利用了加速的DC算法,该算法需要求解一系列凸子问题,为此,我们提出了一种有效的迭代算法,其中每种迭代都允许封闭形式解决方案。在第二种方法中,我们依赖于保密能力问题的凹面凸口等效重新制定,这使我们能够得出所谓的部分最佳响应算法来获得最佳的解决方案。值得注意的是,第二种方法的每次迭代也可以以封闭形式完成。模拟结果表明,与其他已知溶液相比,我们方法的收敛速率更快。我们进行了广泛的数值实验,以评估各种参数对所达到的保密能力的影响。
This paper presents novel numerical approaches to finding the secrecy capacity of the multiple-input multiple-output (MIMO) wiretap channel subject to multiple linear transmit covariance constraints, including sum power constraint, per antenna power constraints and interference power constraint. An analytical solution to this problem is not known and existing numerical solutions suffer from slow convergence rate and/or high per-iteration complexity. Deriving computationally efficient solutions to the secrecy capacity problem is challenging since the secrecy rate is expressed as a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for some special cases. In this paper we propose two low-complexity methods to compute the secrecy capacity along with a convex reformulation for degraded channels. In the first method we capitalize on the accelerated DC algorithm which requires solving a sequence of convex subproblems, for which we propose an efficient iterative algorithm where each iteration admits a closed-form solution. In the second method, we rely on the concave-convex equivalent reformulation of the secrecy capacity problem which allows us to derive the so-called partial best response algorithm to obtain an optimal solution. Notably, each iteration of the second method can also be done in closed form. The simulation results demonstrate a faster convergence rate of our methods compared to other known solutions. We carry out extensive numerical experiments to evaluate the impact of various parameters on the achieved secrecy capacity.