论文标题

GR,几何动力学和现实状况的变形

Deformations of GR, Geometrodynamics and Reality Conditions

论文作者

Krasnov, Kirill, Mitsou, Ermis

论文摘要

在四个维度中,复杂的一般相对论(GR)可以非平整变形:存在(无限参数)的一组修改,它们都具有相同的自由度计数。施加对对应于Riemannian和拆分度量标志的变形理论的版本的现实条件是微不足道的。我们重新审视洛伦兹的签名案件。为了使问题可以解决,我们将注意力限制在四参数的变形集中,这些变形是Ashtekar的Hamiltonian形式主义的自然扩展。后来的哈密顿量是$ eee $和$ eeb $的线性组合。我们认为哈密顿约束是$ eee,eeb,eeb $和$ bbb $的一般线性组合的理论。我们的主要结果是计算改良理论的演化方程式为3米的几何动力学方程。我们表明,仅对于gr(以及相关的自偶发性理论),这些方程式是从只能以指标及其第一次衍生物来写入的意义上的。因此,经过修改的理论本质上是非基本的,因为它们的动力学不能简化为几何动力学。然后,我们证明这与洛伦兹现实条件的问题有关:3米及其时间导数的现实条件是不可接受的,因为它们不受动力学保存。换句话说,它们的保护意味着在高阶时间衍生品上的额外现实条件,这没有留下自由度的空间。

In four dimensions complexified General Relativity (GR) can be non-trivially deformed: There exists an (infinite-parameter) set of modifications all having the same count of degrees of freedom. It is trivial to impose reality conditions that give versions of the deformed theories corresponding to Riemannian and split metric signatures. We revisit the Lorentzian signature case. To make the problem tractable, we restrict our attention to a four-parameter set of deformations that are natural extensions of Ashtekar's Hamiltonian formalism for GR. The Hamiltonian of the later is a linear combination of $EEE$ and $EEB$. We consider theories for which the Hamiltonian constraint is a general linear combination of $EEE, EEB, EBB$ and $BBB$. Our main result is the computation of the evolution equations for the modified theories as geometrodynamics evolution equations for the 3-metric. We show that only for GR (and the related theory of Self-Dual Gravity) these equations close in the sense that they can be written in terms of only the metric and its first time derivative. Modified theories are therefore seen to be essentially non-metric in the sense that their dynamics cannot be reduced to geometrodynamics. We then show this to be related to the problem with Lorentzian reality conditions: the conditions of reality of the 3-metric and its time derivative are not acceptable because they are not preserved by the dynamics. Put differently, their conservation implies extra reality conditions on higher-order time derivatives, which then leaves no room for degrees of freedom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源