论文标题
轴向对称场中的涡流粒子和量子布希定理的应用
Vortex particles in axially symmetric fields and applications of the quantum Busch theorem
论文作者
论文摘要
用轨道角动量(OAM)加速涡流电子到相对论能量并产生涡流离子,质子和其他带电的颗粒的可能性,这些可能性取决于在加速度和波数据包evolves的相位空间中是否保守的OAM是否是保守的。我们表明,包数据包的OAM和平均发射量,后者服从Schrödinger不确定性关系,在轴向对称的电和磁性镜片的轴向对称场中保守,典型的加速器和电子显微镜以及笔陷阱中的光束差异都更好,而对于弱点的单个均可进行的单个近似值。我们分析了数据包RMS半径$ \langleρ^2 \ rangle $的量子动力学,将这种动力与Van Cittert-zernike定理的广义形式联系起来,可在距离源和非gaussian数据包的任意距离上,并适用于非高斯数据包,并适用于Courant-Snyder形式上的形式主义,以描述Waver Packets阶段的进化。因此,涡流颗粒可以加速,聚焦,转向,被困,甚至存储在方位角对称的磁场和陷阱中,与经典的Angular-Momentum主导的光束相似。此外,我们提供了Busch定理的量子版本,该版本指出,在野外或光发射期间,如何使用磁性阴极以及涡流离子和质子来产生涡流电子,并使用用于改变离子电荷状态的磁性剥离箔。数据包的空间连贯性在这些应用中起着至关重要的作用,我们为不同质量的颗粒提供了必要的估计。
The possibilities to accelerate vortex electrons with orbital angular momentum (OAM) to relativistic energies and to produce vortex ions, protons, and other charged particles crucially depend on whether the OAM is conserved during the acceleration and on how phase space of the wave packet evolves. We show that both the OAM and a mean emittance of the packet, the latter obeying the Schrödinger uncertainty relation, are conserved in axially symmetric fields of electric and magnetic lenses, typical for accelerators and electron microscopes, as well as in Penning traps, while a linear approximation of weakly inhomogeneous fields works much better for single packets than for classical beams. We analyze quantum dynamics of the packet's rms radius $\langleρ^2\rangle$, relate this dynamics to a generalized form of the van Cittert-Zernike theorem, applicable at arbitrary distances from a source and for non-Gaussian packets, and adapt the Courant-Snyder formalism to describe the evolution of the wave packet's phase space. The vortex particles can therefore be accelerated, focused, steered, trapped, and even stored in azimuthally symmetric fields and traps, somewhat analogously to the classical angular-momentum-dominated beams. Moreover, we give a quantum version of the Busch theorem, which states how one can produce vortex electrons with a magnetized cathode during either field- or photoemission, as well as vortex ions and protons by using a magnetized stripping foil employed to change a charge state of ions. Spatial coherence of the packets plays a crucial role in these applications and we provide the necessary estimates for particles of different masses.