论文标题

SPAA:对深度图像分类器的基于隐形投影仪的对抗性攻击

SPAA: Stealthy Projector-based Adversarial Attacks on Deep Image Classifiers

论文作者

Huang, Bingyao, Ling, Haibin

论文摘要

基于光基的对抗攻击使用空间增强现实(SAR)技术来欺骗图像分类器,通过使用可控的光源(例如投影仪)更改物理光条件。与放置手工制作的对抗对象的物理攻击相比,基于投影仪的对象会避免修改物理实体,并且可以通过更改投影模式进行瞬时和动态执行。但是,由于复杂的环境和项目和捕捉过程,微妙的光扰动不足以欺骗图像分类器。因此,现有的方法着重于投影明显的对抗模式,而更有趣但具有挑战性的基于隐形投影仪的攻击仍然开放。在本文中,我们首次将此问题提出为端到端的可区分过程,并提出了基于隐形的投影仪的对抗攻击(SPAA)解决方案。在SPAA中,我们使用名为PCNET的深神经网络近似实际项目和捕获过程,然后将PCNET包括在基于投影仪的攻击中,以使生成的对抗性投影在物理上是合理的。最后,为了产生健壮和隐形的对抗性预测,我们提出了一种算法,该算法使用最小的扰动和对抗置信度阈值在对抗性损失和隐形损失优化之间进行交替。我们的实验评估表明,对于有针对性和无靶向攻击,SPAA显然优于其他方法,并且具有更高的攻击成功率,并且更加隐形。

Light-based adversarial attacks use spatial augmented reality (SAR) techniques to fool image classifiers by altering the physical light condition with a controllable light source, e.g., a projector. Compared with physical attacks that place hand-crafted adversarial objects, projector-based ones obviate modifying the physical entities, and can be performed transiently and dynamically by altering the projection pattern. However, subtle light perturbations are insufficient to fool image classifiers, due to the complex environment and project-and-capture process. Thus, existing approaches focus on projecting clearly perceptible adversarial patterns, while the more interesting yet challenging goal, stealthy projector-based attack, remains open. In this paper, for the first time, we formulate this problem as an end-to-end differentiable process and propose a Stealthy Projector-based Adversarial Attack (SPAA) solution. In SPAA, we approximate the real Project-and-Capture process using a deep neural network named PCNet, then we include PCNet in the optimization of projector-based attacks such that the generated adversarial projection is physically plausible. Finally, to generate both robust and stealthy adversarial projections, we propose an algorithm that uses minimum perturbation and adversarial confidence thresholds to alternate between the adversarial loss and stealthiness loss optimization. Our experimental evaluations show that SPAA clearly outperforms other methods by achieving higher attack success rates and meanwhile being stealthier, for both targeted and untargeted attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源