论文标题

在海森堡小组上的共同不变差分运算符和最小的表示

Conformally invariant differential operators on Heisenberg groups and minimal representations

论文作者

Frahm, Jan

论文摘要

对于Heisenberg抛物线亚组$ P $的简单真实的Lie Group $ G $,我们研究了相应的退化主要系列表示。对于一定的感应参数,由Barchini,Kable和Zierau构建的二阶差分算子的形式不变系统的内核是一个子代表,事实证明是最小的表示。为了研究这种子代理,我们将海森堡集团傅立叶变换在非紧凑型图片中,并表明它在$ l^2 $ functions的空间中对最小表示产生了新的实现。 Lie代数操作由订单$ \ leq3 $的差分运算符给出,我们找到了构成最低$ k $ type的功能的明确公式。 这些$ l^2 $ -Models以前以$ \ perperatorname {so}(n,n)$,$ e_ {6(6)} $,$ e_ {7(7)} $和$ e_ {8(8)} $ a kazhdan and Savin的组合,用于$ g_ {2(2)$ by Geld, $ \ widetilde {\ peripatorname {sl}}}(3,\ mathbb {r})$ by torasso,使用不同的方法。我们的新方法为这些情况提供了统一的系统处理,并为$ e_ {6(2)} $,$ e_ {7(-5)} $和$ e_ {8(-24)} $构建了新的$ l^2 $ models $ $ \ widetilde {\ operatoratorname {so}}}(p,q)$,带有$ p \ geq q = 3 $或$ p,q \ geq4 $和$ p+q $偶数。 作为我们建筑的副产品,我们找到了一个明确的公式,用于非平凡的Weyl组元素的组动作,该公式与抛物线子组的简单动作一起生成$ g $。

For a simple real Lie group $G$ with Heisenberg parabolic subgroup $P$, we study the corresponding degenerate principal series representations. For a certain induction parameter the kernel of the conformally invariant system of second order differential operators constructed by Barchini, Kable and Zierau is a subrepresentation which turns out to be the minimal representation. To study this subrepresentation, we take the Heisenberg group Fourier transform in the non-compact picture and show that it yields a new realization of the minimal representation on a space of $L^2$-functions. The Lie algebra action is given by differential operators of order $\leq3$ and we find explicit formulas for the functions constituting the lowest $K$-type. These $L^2$-models were previously known for the groups $\operatorname{SO}(n,n)$, $E_{6(6)}$, $E_{7(7)}$ and $E_{8(8)}$ by Kazhdan and Savin, for the group $G_{2(2)}$ by Gelfand, and for the group $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ by Torasso, using different methods. Our new approach provides a uniform and systematic treatment of these cases and also constructs new $L^2$-models for $E_{6(2)}$, $E_{7(-5)}$ and $E_{8(-24)}$ for which the minimal representation is a continuation of the quaternionic discrete series, and for the groups $\widetilde{\operatorname{SO}}(p,q)$ with either $p\geq q=3$ or $p,q\geq4$ and $p+q$ even. As a byproduct of our construction, we find an explicit formula for the group action of a non-trivial Weyl group element that, together with the simple action of a parabolic subgroup, generates $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源